Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 6, Pages 880–884
DOI: https://doi.org/10.4213/mzm10199
(Mi mzm10199)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Blaschke Products with Finite Dirichlet-Type Integral

R. V. Dallakjan

State Engineering University of Armenia
Full-text PDF (416 kB) Citations (1)
References:
Abstract: The class of functions with finite Dirichlet-type integral is defined as the set of holomorphic functions $f$ in the unit disk satisfying the following condition:
$$ \int_{0}^{2\pi}\int_{0}^{1} (1-r)^{\alpha}|f'(re^{i\theta})|^{p} r\,dr\,d\theta,\qquad \alpha>-1,\quad 0<p<+\infty. $$
These classes are usually denoted by $D_{\alpha}^p$. In this paper, we prove the converse of Rudin's theorem and thus provide a necessary and sufficient condition for a Blaschke product to belong to the class $D_{0}^{1}$.
Keywords: Blaschke product, Dirichlet-type integral, Hardy class, holomorphic function.
Received: 16.11.2012
English version:
Mathematical Notes, 2014, Volume 96, Issue 6, Pages 943–947
DOI: https://doi.org/10.1134/S0001434614110315
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: R. V. Dallakjan, “On Blaschke Products with Finite Dirichlet-Type Integral”, Mat. Zametki, 96:6 (2014), 880–884; Math. Notes, 96:6 (2014), 943–947
Citation in format AMSBIB
\Bibitem{Dal14}
\by R.~V.~Dallakjan
\paper On Blaschke Products with Finite Dirichlet-Type Integral
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 880--884
\mathnet{http://mi.mathnet.ru/mzm10199}
\crossref{https://doi.org/10.4213/mzm10199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343655}
\zmath{https://zbmath.org/?q=an:06435061}
\elib{https://elibrary.ru/item.asp?id=22834452}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 943--947
\crossref{https://doi.org/10.1134/S0001434614110315}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919921508}
Linking options:
  • https://www.mathnet.ru/eng/mzm10199
  • https://doi.org/10.4213/mzm10199
  • https://www.mathnet.ru/eng/mzm/v96/i6/p880
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :159
    References:63
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024