Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 6, Pages 896–904
DOI: https://doi.org/10.4213/mzm10563
(Mi mzm10563)
 

This article is cited in 1 scientific paper (total in 1 paper)

Interpolation of Nonlinear Maps

T. Kappelera, A. M. Savchukb, P. Topalovc, A. A. Shkalikovb

a Institut für Mathematik, Universität Zürich, Switzerland
b M. V. Lomonosov Moscow State University
c Northeastern University, USA
Full-text PDF (519 kB) Citations (1)
References:
Abstract: Let $(X_0, X_1)$ and $(Y_0, Y_1)$ be complex Banach couples and assume that $X_1\subseteq X_0$ with norms satisfying $\|x\|_{X_0} \le c\|x\|_{X_1}$ for some $c >\nobreak 0$. For any $0<\theta <1$, denote by $X_\theta = [X_0, X_1]_\theta$ and $Y_\theta = [Y_0, Y_1]_\theta$ the complex interpolation spaces and by $B(r, X_\theta)$, $0 \le \theta \le 1$, the open ball of radius $r>0$ in $X_\theta$ centered at zero. Then, for any analytic map $\Phi\colon B(r, X_0) \to Y_0+ Y_1$ such that $\Phi\colon B(r, X_0)\to Y_0$ and $\Phi\colon B(c^{-1}r, X_1)\to Y_1$ are continuous and bounded by constants $M_0$ and $M_1$, respectively, the restriction of $\Phi$ to $B(c^{-\theta}r, X_\theta)$, $0 < \theta <\nobreak 1$, is shown to be a map with values in $Y_\theta$ which is analytic and bounded by $ M_0^{1-\theta} M_1^\theta$.
Keywords: interpolation, nonlinear maps, Banach couple, Hausdorff space.
Received: 23.09.2014
English version:
Mathematical Notes, 2014, Volume 96, Issue 6, Pages 957–964
DOI: https://doi.org/10.1134/S0001434614110339
Bibliographic databases:
Document Type: Article
UDC: 517.988.52
Language: Russian
Citation: T. Kappeler, A. M. Savchuk, P. Topalov, A. A. Shkalikov, “Interpolation of Nonlinear Maps”, Mat. Zametki, 96:6 (2014), 896–904; Math. Notes, 96:6 (2014), 957–964
Citation in format AMSBIB
\Bibitem{KapSavTop14}
\by T.~Kappeler, A.~M.~Savchuk, P.~Topalov, A.~A.~Shkalikov
\paper Interpolation of Nonlinear Maps
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 896--904
\mathnet{http://mi.mathnet.ru/mzm10563}
\crossref{https://doi.org/10.4213/mzm10563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343657}
\zmath{https://zbmath.org/?q=an:06435063}
\elib{https://elibrary.ru/item.asp?id=22834454}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 957--964
\crossref{https://doi.org/10.1134/S0001434614110339}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700033}
\elib{https://elibrary.ru/item.asp?id=24022715}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919883386}
Linking options:
  • https://www.mathnet.ru/eng/mzm10563
  • https://doi.org/10.4213/mzm10563
  • https://www.mathnet.ru/eng/mzm/v96/i6/p896
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :192
    References:57
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024