Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2018, Volume 79, Issue 1, Pages 1–95 (Mi mmo608)  

This article is cited in 45 scientific papers (total in 45 papers)

Quantum $q$-Langlands correspondence

M. Aganagicab, E. Frenkela, A. Okounkovcde

a Department of Mathematics, University of California, Berkeley, USA
b Center for Theoretical Physics, University of California, Berkeley, USA
c IITP, Moscow, Russia
d Department of Mathematics, Columbia University, New York, USA
e Laboratory of Representation Theory and Mathematical Physics, Higher School of Economics, Moscow, Russia
References:
Abstract: We conjecture, and prove for all simply-laced Lie algebras, an identification between the spaces of $q$-deformed conformal blocks for the deformed $\mathcal{ W}$-algebra $\mathcal{ W}_{q,t}(\mathfrak{g})$ and quantum affine algebra of $\widehat{^L\mathfrak{g}}$, where $^L\mathfrak{g}$ is the Langlands dual Lie algebra to $\mathfrak{g}$. We argue that this identification may be viewed as a manifestation of a $q$-deformation of the quantum Langlands correspondence. Our proof relies on expressing the $q$-deformed conformal blocks for both algebras in terms of the quantum $\mathrm{K}$-theory of the Nakajima quiver varieties. The physical origin of the isomorphism between them lies in the $\mathrm{6d}$ little string theory. The quantum Langlands correspondence emerges in the limit in which the $\mathrm{6d}$ little string theory becomes the $\mathrm{6d}$ conformal field theory with $(2,0)$ supersymmetry.
References: 130 entries.
Key words and phrases: Landlands correspondence, $q$-conformal blocks.
Funding agency Grant number
National Science Foundation 1521446
DMS-1201335
FRG 1159416
Simons Foundation
Ministry of Education and Science of the Russian Federation
MA’s research is supported by NSF grant #1521446, by the Simons Foundation as a Simons Investigator and by the Berkeley Center for Theoretical Physics. EF’s research was supported by the NSF grant DMS-1201335. AO thanks the Simons foundation for being financially supported as a Simons investigator, NSF for supporting enumerative geometry at Columbia as a part of FRG 1159416, and Russian Academic Excellence Project ‘5–100’.
Received: 15.04.2017
Revised: 20.05.2018
English version:
Transactions of the Moscow Mathematical Society, 2018, Pages 1–83
DOI: https://doi.org/10.1090/mosc/278
Bibliographic databases:
Document Type: Article
UDC: 517.958:530.145
MSC: 22E57, 81T40
Language: English
Citation: M. Aganagic, E. Frenkel, A. Okounkov, “Quantum $q$-Langlands correspondence”, Tr. Mosk. Mat. Obs., 79, no. 1, MCCME, M., 2018, 1–95; Trans. Moscow Math. Soc., 2018, 1–83
Citation in format AMSBIB
\Bibitem{AgaFreOko18}
\by M.~Aganagic, E.~Frenkel, A.~Okounkov
\paper Quantum~$q$-Langlands correspondence
\serial Tr. Mosk. Mat. Obs.
\yr 2018
\vol 79
\issue 1
\pages 1--95
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo608}
\elib{https://elibrary.ru/item.asp?id=37045073}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2018
\pages 1--83
\crossref{https://doi.org/10.1090/mosc/278}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060977186}
Linking options:
  • https://www.mathnet.ru/eng/mmo608
  • https://www.mathnet.ru/eng/mmo/v79/i1/p1
  • This publication is cited in the following 45 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :156
    References:48
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024