Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2018, Volume 79, Issue 1, Pages 117–132 (Mi mmo610)  

This article is cited in 24 scientific papers (total in 24 papers)

On the solvability of a boundary value problem in p-adic string theory

Kh. A. Khachatryan

Institute of Mathematics of the National Academy of Sciences of Armenia
References:
Abstract: This paper is devoted to the study and solution of a boundary value problem for a convolution-type integral equation with cubic nonlinearity. The above problem has a direct application to the p-adic theory of open-closed strings for the scalar tachyon field. It is shown that a one-parameter family of monotone continuous bounded solutions exists. Under additional conditions on the kernel of the equation, an asymptotic formula for the solutions thus constructed is established. Using these results, as particular cases we obtain Zhukovskaya's theorem on rolling solutions of the nonlinear equation in the p-adic theory of open-closed strings and the Vladimirov–Volovich theorem on the existence of a nontrivial solution between certain vacua.
The results are extended to the case of a more general nonlinear boundary value problem.
Key words and phrases: p-adic string, successive approximations, monotonicity, bounded solution, kernel, boundary value problem.
Received: 01.09.2017
English version:
Transactions of the Moscow Mathematical Society, 2018, Pages 101–115
DOI: https://doi.org/10.1090/mosc/281
Bibliographic databases:
Document Type: Article
UDC: 517.968.4
MSC: 45G05
Language: Russian
Citation: Kh. A. Khachatryan, “On the solvability of a boundary value problem in p-adic string theory”, Tr. Mosk. Mat. Obs., 79, no. 1, MCCME, M., 2018, 117–132; Trans. Moscow Math. Soc., 2018, 101–115
Citation in format AMSBIB
\Bibitem{Kha18}
\by Kh.~A.~Khachatryan
\paper On the solvability of a boundary value problem in $ p$-adic string theory
\serial Tr. Mosk. Mat. Obs.
\yr 2018
\vol 79
\issue 1
\pages 117--132
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo610}
\elib{https://elibrary.ru/item.asp?id=37045085}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2018
\pages 101--115
\crossref{https://doi.org/10.1090/mosc/281}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060867696}
Linking options:
  • https://www.mathnet.ru/eng/mmo610
  • https://www.mathnet.ru/eng/mmo/v79/i1/p117
  • This publication is cited in the following 24 articles:
    1. A. Kh. Khachatryan, Kh. A. Khachatryan, A. S. Petrosyan, “O konstruktivnoi razreshimosti odnogo klassa nelineinykh integralnykh uravnenii gammershteinovskogo tipa na vsei pryamoi”, Izv. vuzov. Matem., 2025, no. 3, 89–106  mathnet  crossref
    2. A. Kh. Khachatryan, Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya, otsutstviya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi s operatorom tipa Gammershteina — Ctiltesa”, Tr. IMM UrO RAN, 30, no. 1, 2024, 249–269  mathnet  crossref  elib
    3. A. Kh. Khachatryan, Kh. A. Khachatryan, H. S. Petrosyan, “On nonlinear convolution-type integral equations in the theory of $p$-adic strings”, Theoret. and Math. Phys., 216:1 (2023), 1068–1081  mathnet  crossref  crossref  mathscinet  adsnasa
    4. Kh. A. Khachatryan, H. S. Petrosyan, “On non-trivial solvability of one system of non-linear integral equations on the real axis”, Izv. Math., 87:5 (2023), 1062–1077  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A.Kh. Khachatryan, Kh.A. Khachatryan, “ON QUALITATIVE PROPERTIES OF A SOLUTION OF ONE CLASS SINGULAR INTEGRAL EQUATIONS ON THE WHOLE LINE WITH ODD NONLINEARITY”, J Math Sci, 271:5 (2023), 597  crossref
    6. Kh.A. Khachatryan, H.S. Petrosyan, A. R. Hakobyan, “On solvability of one class of integral equations on whole line with monotonic and convex nonlinearity”, J Math Sci, 271:5 (2023), 610  crossref
    7. Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022) (to appear)  mathnet
    8. Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022), 446–479  mathnet  crossref
    9. A. Kh. Khachatryan, Kh. A. Khachatryan, “A System of Integral Equations on the Entire Axis with Convex and Monotone Nonlinearity”, J. Contemp. Mathemat. Anal., 57:5 (2022), 311  crossref
    10. Kh. A. Khachatryan, H. S. Petrosyan, “On One Class of Multidimensional Integral Equations of Convolution Type with Convex Nonlinearity”, Diff Equat, 58:5 (2022), 680  crossref
    11. Kh. A. Khachatryan, H. S. Petrosyan, “Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line”, Russian Math. (Iz. VUZ), 65:1 (2021), 27–46  mathnet  crossref  crossref  isi
    12. Kh. A. Khachatryan, H. S. Petrosyan, “On bounded solutions of a class of nonlinear integral equations in the plane and the Urysohn equation in a quadrant of the plane”, Ukr. Math. J., 73:5 (2021), 811–829  crossref  mathscinet  isi  scopus
    13. Kh. A. Khachatryan, H. S. Petrosyan, “Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations”, Trans. Moscow Math. Soc., 82 (2021), 259–271  mathnet  crossref
    14. Kh. A. Khachatryan, A. S. Petrosyan, “O postroenii summiruemogo resheniya odnogo klassa nelineinykh integralnykh uravnenii tipa Gammershteina - Nemytskogo na vsei pryamoi”, Tr. IMM UrO RAN, 26, no. 2, 2020, 278–287  mathnet  crossref  elib
    15. Kh. A. Khachatryan, “Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity”, Izv. Math., 84:4 (2020), 807–815  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    16. A. Kh. Khachatryan, Kh. A. Khachatryan, “On solvability of one infinite system of nonlinear functional equations in the theory of epidemics”, Eurasian Math. J., 11:2 (2020), 52–64  mathnet  crossref
    17. Kh. A. Khachatryan, “Solvability of some nonlinear boundary value problems for singular integral equations of convolution type”, Trans. Moscow Math. Soc., 81:1 (2020), 1–31  mathnet  crossref  elib
    18. Kh. A. Khachatryan, H. S. Petrosyan, “Solvability of a nonlinear problem in open-closed p-adic string theory”, Differ. Equ., 56:10 (2020), 1371–1378  crossref  mathscinet  zmath  isi  scopus
    19. Kh. A. Khachatryan, S. M. Andriyan, “On solvability of one class of nonlinear integral equations on whole line with two monotone nonlinearities”, P-Adic Numbers Ultrametric Anal. Appl., 12:4 (2020), 259–275  crossref  mathscinet  zmath  isi  scopus
    20. Kh. A. Khachatryan, S. M. Andriyan, “On the solvability of a class of discrete matrix equations with cubic nonlinearity”, Ukr. Math. J., 71:12 (2020), 1910–1928  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:1434
    Full-text PDF :269
    References:74
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025