Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2021, Volume 33, Number 4, Pages 21–44
DOI: https://doi.org/10.20948/mm-2021-04-02
(Mi mm4277)
 

This article is cited in 5 scientific papers (total in 5 papers)

Spectrum of a continuous closed symmetric chain with an arbitrary number of contours

A. S. Bugaeva, A. G. Tatashevbc, M. V. Yashinabc

a Moscow Institute of Physics and Technology (National Research University)
b Moscow Automobile and Road Construction State Technical University (MADI)
c Moscow Technical University of Communications and Informatics (MTUCI)
Full-text PDF (480 kB) Citations (5)
References:
Abstract: A dynamical system with continuous time and continuous state space is studied. The system belongs to the class of Buslaev contour networks. Contour networks can be used to simulate of traffic on complex networks, as well as have other applications, in particular, to be used in modeling communication systems. Considered system contains a closed sequence of contours, each of which has two symmetrically located common points, called nodes, with adjacent contours. There is a segment on each contour. It is called a cluster and moves at a constant speed. This title is explained by the fact that in the discrete version of the transport model, such a segment corresponds to a group of particles located in adjacent cells and moving simultaneously, and each particle corresponds to a vehicle. Delays of clusters moving are caused by the impossibility of simultaneous passage of two clusters through a common node. The dynamics of the system is such that, from a certain moment in time, the states are belonging to a certain set (limit cycle) are periodically repeated. Every limit cycle corresponds to the value of the average cluster velocity. A value depends on the initial state in general case. System behavior on limit cycles is developed in dependence on initial conditions. Results are obtained on the nature of the behavior of the system under consideration at the limit cycle, on the value of the cycle period, on the behavior of the function of the state, called the delay potential. The possible values of the average velocity of the clusters are obtained for the prescribed values of the number of contours and the cluster length. Sufficient conditions for the existence of limit cycles for small cluster lengths with delays in motion are obtained.
Keywords: cluster model, discrete dynamical systems, limit cycles.
Received: 24.11.2020
Revised: 24.11.2020
Accepted: 18.01.2021
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 6, Pages 1014–1027
DOI: https://doi.org/10.1134/S207004822106003X
Document Type: Article
Language: Russian
Citation: A. S. Bugaev, A. G. Tatashev, M. V. Yashina, “Spectrum of a continuous closed symmetric chain with an arbitrary number of contours”, Matem. Mod., 33:4 (2021), 21–44; Math. Models Comput. Simul., 13:6 (2021), 1014–1027
Citation in format AMSBIB
\Bibitem{BugTatYas21}
\by A.~S.~Bugaev, A.~G.~Tatashev, M.~V.~Yashina
\paper Spectrum of a continuous closed symmetric chain with an arbitrary number of contours
\jour Matem. Mod.
\yr 2021
\vol 33
\issue 4
\pages 21--44
\mathnet{http://mi.mathnet.ru/mm4277}
\crossref{https://doi.org/10.20948/mm-2021-04-02}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 6
\pages 1014--1027
\crossref{https://doi.org/10.1134/S207004822106003X}
Linking options:
  • https://www.mathnet.ru/eng/mm4277
  • https://www.mathnet.ru/eng/mm/v33/i4/p21
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :131
    References:30
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024