Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2021, Volume 33, Number 4, Pages 45–59
DOI: https://doi.org/10.20948/mm-2021-04-03
(Mi mm4278)
 

This article is cited in 1 scientific paper (total in 1 paper)

To justification of the integral convergence method for studying the finite-difference schemes accuracy

V. V. Ostapenko, N. A. Khandeeva

Lavrentyev Institute of Hydrodynamics SB RAS
Full-text PDF (474 kB) Citations (1)
References:
Abstract: We justified the method of integral convergence for studying the accuracy of finitedifference shock-capturing schemes for numerical simulation of shock waves propagating at a variable speed. The order of integral convergence is determined using a series of numerical calculations on a family of embedded difference grids. It allows us to model a space-continuous difference solution of the corresponding Cauchy problem. This approach is used to study the accuracy of explicit finite-difference schemes such as Rusanov scheme, TVD and WENO schemes, which have a higher order of classic approximation, as well as an implicit compact scheme with artificial viscosity of the fourth order of divergence, which has a third order of both classic and weak approximation.
Keywords: intergal convergence of difference schemes, Rusanov scheme, TVD scheme, WENO scheme, compact scheme.
Funding agency Grant number
Russian Science Foundation 16-11-10033
Received: 13.10.2020
Revised: 13.10.2020
Accepted: 30.11.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 6, Pages 1028–1037
DOI: https://doi.org/10.1134/S207004822106017X
Document Type: Article
Language: Russian
Citation: V. V. Ostapenko, N. A. Khandeeva, “To justification of the integral convergence method for studying the finite-difference schemes accuracy”, Matem. Mod., 33:4 (2021), 45–59; Math. Models Comput. Simul., 13:6 (2021), 1028–1037
Citation in format AMSBIB
\Bibitem{OstKha21}
\by V.~V.~Ostapenko, N.~A.~Khandeeva
\paper To justification of the integral convergence method for studying the finite-difference schemes accuracy
\jour Matem. Mod.
\yr 2021
\vol 33
\issue 4
\pages 45--59
\mathnet{http://mi.mathnet.ru/mm4278}
\crossref{https://doi.org/10.20948/mm-2021-04-03}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 6
\pages 1028--1037
\crossref{https://doi.org/10.1134/S207004822106017X}
Linking options:
  • https://www.mathnet.ru/eng/mm4278
  • https://www.mathnet.ru/eng/mm/v33/i4/p45
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :95
    References:33
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024