Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2021, Volume 33, Number 4, Pages 3–20
DOI: https://doi.org/10.20948/mm-2021-04-01
(Mi mm4276)
 

This article is cited in 2 scientific papers (total in 2 papers)

Numerical investigation of two-phase hyperbolic models

B. A. Korneev, R. R. Tukhvatullina, E. B. Savenkov

Keldysh Institute for Applied Mathematics of RAS
Full-text PDF (663 kB) Citations (2)
References:
Abstract: The work is devoted to the numerical study of a finite-volume scheme with an HLLEM flux for solving equations from the family of Baer-Nunziato models. Three versions of the model are considered, differing in the degree of ”nonequilibrium”. A brief description of the models and their differences is provided. To approximate the equations of nonequilibrium models with rigid right-hand sides, which describe the process of mechanical and thermodynamic relaxation, the method of splitting into physical processes is used. Spatial approximations are constructed using the 1st and 2nd order finite volume method (TVD). The HLLEM flux is used as a numerical flux, for which a simple algorithm for determining the method parameter that guarantees the physicality of the solution is proposed. A feature of the work is that all three considered models are applied to analyze virtually the same physical setting.
Keywords: Baer-Nunziato equations, HLLEM flux, Riemann problem.
Funding agency Grant number
Russian Science Foundation 17-71-30014
Received: 12.11.2020
Revised: 12.11.2020
Accepted: 30.11.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 6, Pages 1002–1013
DOI: https://doi.org/10.1134/S2070048221060090
Document Type: Article
Language: Russian
Citation: B. A. Korneev, R. R. Tukhvatullina, E. B. Savenkov, “Numerical investigation of two-phase hyperbolic models”, Matem. Mod., 33:4 (2021), 3–20; Math. Models Comput. Simul., 13:6 (2021), 1002–1013
Citation in format AMSBIB
\Bibitem{KorTukSav21}
\by B.~A.~Korneev, R.~R.~Tukhvatullina, E.~B.~Savenkov
\paper Numerical investigation of two-phase hyperbolic models
\jour Matem. Mod.
\yr 2021
\vol 33
\issue 4
\pages 3--20
\mathnet{http://mi.mathnet.ru/mm4276}
\crossref{https://doi.org/10.20948/mm-2021-04-01}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 6
\pages 1002--1013
\crossref{https://doi.org/10.1134/S2070048221060090}
Linking options:
  • https://www.mathnet.ru/eng/mm4276
  • https://www.mathnet.ru/eng/mm/v33/i4/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :100
    References:34
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024