Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 10, Pages 62–74
DOI: https://doi.org/10.26907/0021-3446-2019-10-62-74
(Mi ivm9507)
 

This article is cited in 1 scientific paper (total in 1 paper)

Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations

K. S. Lapin

Mordovian State Pedagogical Institute named after M.E. Evseviev, 11A Studencheskaya str., Saransk, 430007 Russia
Full-text PDF (366 kB) Citations (1)
References:
Abstract: We introduce the concept of a $\mathcal{P}$-perturbed system and, in particular, $\mathcal{P}$-perturbed complex system. Based on the method Lyapunov functions we obtain the sufficient condition of total Poisson boundedness of solutions of $\mathcal{P}$-perturbed systems with respect to any linear system with constant coefficients. Based on the method of vector Lyapunov functions and the above condition we obtain sufficient conditions of total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex system and solutions of $\mathcal{P}$-perturbed complex systems with feedback loop.
Keywords: $\mathcal{P}$-perturbed system, complex system, Lyapunov function, total Poisson boundedness of solutions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-139.2017.1
Received: 08.10.2018
Revised: 13.12.2018
Accepted: 19.12.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 10, Pages 55–65
DOI: https://doi.org/10.3103/S1066369X19100074
Bibliographic databases:
Document Type: Article
UDC: 517.925
Language: Russian
Citation: K. S. Lapin, “Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10, 62–74; Russian Math. (Iz. VUZ), 63:10 (2019), 55–65
Citation in format AMSBIB
\Bibitem{Lap19}
\by K.~S.~Lapin
\paper Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 10
\pages 62--74
\mathnet{http://mi.mathnet.ru/ivm9507}
\crossref{https://doi.org/10.26907/0021-3446-2019-10-62-74}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 10
\pages 55--65
\crossref{https://doi.org/10.3103/S1066369X19100074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000498483400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075584508}
Linking options:
  • https://www.mathnet.ru/eng/ivm9507
  • https://www.mathnet.ru/eng/ivm/y2019/i10/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:1924
    Full-text PDF :113
    References:37
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024