Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 10, Pages 75–86
DOI: https://doi.org/10.26907/0021-3446-2019-10-75-86
(Mi ivm9508)
 

This article is cited in 11 scientific papers (total in 11 papers)

The second initial-boundary value problem for a BB-hyperbolic equation

K. B. Sabitovab, N. V. Zaitsevac

a Sterlitamak branch of Bashkir State University, 37 Lenin Ave., Sterlitamak, 453103 Russia
b Institute of Strategic Studies of Bashkortostan Republic, 68 Odesskaya str., Sterlitamak, 453103 Russia
c Kazan Federal University, 35 Kremlyovskaya str., Kazan, 420008 Russia
References:
Abstract: We investigate an initial-boundary value problem in a rectangular domain for a hyperbolic equation with Bessel operator. The solution is obtained in the form of the Fourier–Bessel series. The uniqueness of solution of the problem is established by means of the method of integral identities. At the existence of the proof we use assessment of coefficients of series, the asymptotic formula for Bessel function and asymptotic formula for eigenvalues. We obtain sufficient conditions on the functions defining initial data of the problem and prove the stability theorem for the solution of the problem.
Keywords: hyperbolic equation, Bessel differential operator, initial-boundary value problem, uniqueness, existence, Fourier–Bessel series, uniform convergence, stability.
Funding agency Grant number
Kazan' Federal University 0212/02.12.10179.001
Received: 02.09.2018
Revised: 02.09.2018
Accepted: 19.12.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 10, Pages 66–76
DOI: https://doi.org/10.3103/S1066369X19100086
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: K. B. Sabitov, N. V. Zaitseva, “The second initial-boundary value problem for a BB-hyperbolic equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10, 75–86; Russian Math. (Iz. VUZ), 63:10 (2019), 66–76
Citation in format AMSBIB
\Bibitem{SabZai19}
\by K.~B.~Sabitov, N.~V.~Zaitseva
\paper The second initial-boundary value problem for a $B$-hyperbolic equation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 10
\pages 75--86
\mathnet{http://mi.mathnet.ru/ivm9508}
\crossref{https://doi.org/10.26907/0021-3446-2019-10-75-86}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 10
\pages 66--76
\crossref{https://doi.org/10.3103/S1066369X19100086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000498483400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075578061}
Linking options:
  • https://www.mathnet.ru/eng/ivm9508
  • https://www.mathnet.ru/eng/ivm/y2019/i10/p75
  • This publication is cited in the following 11 articles:
    1. A. V. Glushak, “On the Unique Solvability of Nonlocal Problems for Abstract Singular Equations”, Math. Notes, 115:5 (2024), 706–718  mathnet  crossref  crossref  mathscinet
    2. Yu. N. Bulatov, “Commutators of singular \varvecK-pseudodifferential operators in \varvecRn”, J. Pseudo-Differ. Oper. Appl., 15:4 (2024)  crossref
    3. Yu. N. Bulatov, “Gording's Inequality for Singular J-Pseudodifferential Kipriyanov Operators”, Lobachevskii J Math, 45:11 (2024), 5458  crossref
    4. L. N. Lyakhov, Yu. N. Bulatov, S.A. Roschupkin, E. L. Sanina, “Fundamentalnoe reshenie singulyarnogo differentsialnogo operatora Besselya s otritsatelnym parametrom”, Izv. vuzov. Matem., 2023, no. 7, 52–65  mathnet  crossref
    5. N. V. Zaitseva, “Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator”, Diff Equat, 59:S1 (2023), 1  crossref
    6. L. N. Lyakhov, E. L. Sanina, S. A. Roshchupkin, Yu. N. Bulatov, “Fundamental Solution of a Singular Bessel Differential Operator with a Negative Parameter”, Russ Math., 67:7 (2023), 43  crossref
    7. A. V. Glushak, “Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations”, Math. Notes, 111:1 (2022), 20–32  mathnet  crossref  crossref  mathscinet  isi
    8. L. N. Lyakhov, Yu. N. Bulatov, S. A. Roshchupkin, E. L. Sanina, “Pseudoshift and the Fundamental Solution of the Kipriyanov ΔB-Operator”, Diff Equat, 58:12 (2022), 1639  crossref
    9. Zh. A. Balkizov, “Zadacha so smescheniem dlya vyrozhdayuschegosya giperbolicheskogo uravneniya pervogo roda”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 25:1 (2021), 21–34  mathnet  crossref  zmath  elib
    10. A. I. Kozhanov, “Nachalno-granichnye zadachi dlya vyrozhdayuschikhsya giperbolicheskikh uravnenii”, Sib. elektron. matem. izv., 18:1 (2021), 43–53  mathnet  crossref
    11. L. N. Lyakhov, K. S. Yeletskikh, E. L. Sanina, “Boundary value problems for the Euler-Poisson-Darboux equation”, Lobachevskii J. Math., 41:5, SI (2020), 797–809  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :209
    References:47
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025