|
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1984, Volume 25, Pages 115–207
(Mi intd76)
|
|
|
|
This article is cited in 48 scientific papers (total in 48 papers)
Algebraic $K$-theory and the norm residue homomorphism
A. A. Suslin
Abstract:
Recent results on the structure of the group $K_2$ of a field and its connections with the Brauer group are presented. The $K$-groups of Severi–Brauer varieties and simple algebras are computed. A proof is given of Milnor's conjecture that for any field $F$ and natural number $n>1$ there is the isomorphism $R_{n,F}\colon K_2(F)/nK_2(F)\overset\sim\to_n\mathrm{Br}(F)$. Algebrogeometric applications of the main results are presented.
Citation:
A. A. Suslin, “Algebraic $K$-theory and the norm residue homomorphism”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 25, VINITI, Moscow, 1984, 115–207; J. Soviet Math., 30:6 (1985), 2556–2611
Linking options:
https://www.mathnet.ru/eng/intd76 https://www.mathnet.ru/eng/intd/v25/p115
|
|