Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1984, Volume 25, Pages 115–207 (Mi intd76)  

This article is cited in 49 scientific papers (total in 49 papers)

Algebraic K-theory and the norm residue homomorphism

A. A. Suslin
Abstract: Recent results on the structure of the group K2 of a field and its connections with the Brauer group are presented. The K-groups of Severi–Brauer varieties and simple algebras are computed. A proof is given of Milnor's conjecture that for any field F and natural number n>1 there is the isomorphism Rn,F:K2(F)/nK2(F)nBr(F). Algebrogeometric applications of the main results are presented.
English version:
Journal of Soviet Mathematics, 1985, Volume 30, Issue 6, Pages 2556–2611
DOI: https://doi.org/10.1007/BF02249123
Bibliographic databases:
UDC: 512.667.3
Language: Russian
Citation: A. A. Suslin, “Algebraic K-theory and the norm residue homomorphism”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 25, VINITI, Moscow, 1984, 115–207; J. Soviet Math., 30:6 (1985), 2556–2611
Citation in format AMSBIB
\Bibitem{Sus84}
\by A.~A.~Suslin
\paper Algebraic $K$-theory and the norm residue homomorphism
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1984
\vol 25
\pages 115--207
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd76}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=770942}
\zmath{https://zbmath.org/?q=an:0566.12016|0558.12013}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 30
\issue 6
\pages 2556--2611
\crossref{https://doi.org/10.1007/BF02249123}
Linking options:
  • https://www.mathnet.ru/eng/intd76
  • https://www.mathnet.ru/eng/intd/v25/p115
  • This publication is cited in the following 49 articles:
    1. N. A. Vavilov, “St. Petersburg School of Linear Groups: II. Early Works by Suslin”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 30  crossref
    2. Ivan D. Chipchakov, Boyan B. Paunov, “Quasifinite fields of prescribed characteristic and Diophantine dimension”, Analele Universitatii “Ovidius” Constanta - Seria Matematica, 32:2 (2024), 19  crossref
    3. N. A. Vavilov, “Saint Petersburg School of the Theory of Linear Groups. I. Prehistory”, Vestnik St.Petersb. Univ.Math., 56:3 (2023), 273  crossref
    4. St. Petersburg Math. J., 34:4 (2023), 715–720  mathnet  crossref
    5. Diego Izquierdo, Giancarlo Lucchini Arteche, “Local-global principles for homogeneous spaces over some two-dimensional geometric global fields”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2021:781 (2021), 165  crossref
    6. Wen-Wei Li, “Stable conjugacy and epipelagic L-packets for Brylinski–Deligne covers of Sp(2n)”, Sel. Math. New Ser., 26:1 (2020)  crossref
    7. Yong Hu, “Reduced norms of division algebras over complete discrete valuation fields of local-global type”, J. Algebra Appl., 19:11 (2020), 2050217  crossref
    8. Philippe Gille, Lecture Notes in Mathematics, 2238, Groupes algébriques semi-simples en dimension cohomologique ≤2, 2019, 55  crossref
    9. Abhay Soman, “On triviality of the reduced Whitehead group over Henselian fields”, Arch. Math., 113:3 (2019), 237  crossref
    10. Yong Hu, “A Cohomological Hasse Principle Over Two-dimensional Local Rings”, Int Math Res Notices, 2016, rnw149  crossref
    11. R. Preeti, A. Soman, “Adjoint groups over Qp(X) and R-equivalence”, Journal of Pure and Applied Algebra, 219:9 (2015), 4254  crossref
    12. Manfred Kolster, The Bloch–Kato Conjecture for the Riemann Zeta Function, 2015, 97  crossref
    13. Rob de Jeu, James D. Lewis, “Beilinson's Hodge Conjecture for Smooth Varieties”, J K-Theor, 11:2 (2013), 243  crossref
    14. R. Preeti, “Classification theorems for hermitian forms, the Rost kernel and Hasse principle over fields withcd2(k)⩽3”, Journal of Algebra, 385 (2013), 294  crossref
    15. V. I. Yanchevskiǐ, “Homogeneous skew-fields of non-commutative rational functions and their reduced Whitehead groups”, J. Math. Sci. (N. Y.), 183:5 (2012), 727–747  mathnet  crossref
    16. Philippe Gille, Developments in Mathematics, 18, Quadratic Forms, Linear Algebraic Groups, and Cohomology, 2010, 41  crossref
    17. Roozbeh Hazrat, Nikolai Vavilov, “Bak's work on theK-theory of rings”, J K-Theor, 4:1 (2009), 1  crossref
    18. Masanori Asakura, Shuji Saito, “Surfaces over a p-adic field with infinite torsion in the Chow group of 0-cycles”, ANT, 1:2 (2007), 163  crossref
    19. Leonid Positselski, “Galois Cohomology of Certain Field Extensions and the Divisible Case of Milnor–Kato Conjecture”, K-Theory, 36:1-2 (2006), 33  crossref
    20. Masanori Asakura, “Surjectivity of p-adic regulators on K2 of Tate curves”, Invent. math., 165:2 (2006), 267  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:1121
    Full-text PDF :657
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025