Loading [MathJax]/jax/output/CommonHTML/jax.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1984, Volume 25, Pages 209–257 (Mi intd77)  

This article is cited in 39 scientific papers (total in 40 papers)

Linear codes and modular curves

S. G. Vlăduţ, Yu. I. Manin
Abstract: Results of recent investigations at the juncture of coding theory, the theory of computability, and algebraic geometry over finite fields are presented. The basic problems of the asymptotic theory of codes and Goppa's construction of codes on the basis of algebraic curves are presented, and a detailed algorithmic analysis is given of the codes arising on the modular curves of elliptic modules of V. G. Drinfel'd.
English version:
Journal of Soviet Mathematics, 1985, Volume 30, Issue 6, Pages 2611–2643
DOI: https://doi.org/10.1007/BF02249124
Bibliographic databases:
Document Type: Article
UDC: 519.725+512.624
Language: Russian
Citation: S. G. Vlăduţ, Yu. I. Manin, “Linear codes and modular curves”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 25, VINITI, Moscow, 1984, 209–257; J. Soviet Math., 30:6 (1985), 2611–2643
Citation in format AMSBIB
\Bibitem{VlaMan84}
\by S.~G.~Vl{\u a}du\c t, Yu.~I.~Manin
\paper Linear codes and modular curves
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1984
\vol 25
\pages 209--257
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd77}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=770943}
\zmath{https://zbmath.org/?q=an:0629.94013}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 30
\issue 6
\pages 2611--2643
\crossref{https://doi.org/10.1007/BF02249124}
Linking options:
  • https://www.mathnet.ru/eng/intd77
  • https://www.mathnet.ru/eng/intd/v25/p209
  • This publication is cited in the following 40 articles:
    1. Adnen Sboui, “Maximal hypersurfaces of degree d in Pn(Fq) and minimum weight spectrum of the generalized PRM(q, d, n)-code”, J. Geom., 115:1 (2024)  crossref
    2. Yves Aubry, Elena Berardini, Fabien Herbaut, Marc Perret, “Algebraic geometry codes over abelian surfaces containing no absolutely irreducible curves of low genus”, Finite Fields and Their Applications, 70 (2021), 101791  crossref
    3. Tohru Nakashima, “Parameters of AG codes from vector bundles”, Finite Fields and Their Applications, 18:4 (2012), 746  crossref
    4. Chaoping Xing, “Asymptotically Good Nonlinear Codes From Algebraic Curves”, IEEE Trans. Inform. Theory, 57:9 (2011), 5991  crossref
    5. Alp Bassa, Peter Beelen, “The Galois closure of Drinfeld modular towers”, Journal of Number Theory, 131:3 (2011), 561  crossref
    6. Yuri I. Manin, Matilde Marcolli, “Error-Correcting Codes and Phase Transitions”, Math.Comput.Sci., 5:2 (2011), 133  crossref
    7. Mihran Papikian, “Modular varieties of 𝒟-elliptic sheaves and the Weil-Deligne bound”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2009:626 (2009)  crossref
    8. Ying Zhang, Dian-Wu Yue, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008, 1  crossref
    9. M. Papikian, “The number of rational points on Drinfeld modular varieties over finite fields”, International Mathematics Research Notices, 2006  crossref
    10. Antonino Giorgio Spera, “Asymptotically Good Codes from Generalized Algebraic-Geometry Codes”, Des Codes Crypt, 37:2 (2005), 305  crossref
    11. Chaoping Xing, “Goppa geometric codes achieving the Gilbert-Varshamov bound”, IEEE Trans. Inform. Theory, 51:1 (2005), 259  crossref
    12. Viet NguyenKhac, Shin-ichiro Yamada, “On d-gonality of Drinfel'd modular curves and strong Uniform Boundedness Conjecture”, Proc. Japan Acad. Ser. A Math. Sci., 77:7 (2001)  crossref
    13. Ernst-Ulrich Gekeler, “Invariants of Some Algebraic Curves Related to Drinfeld Modular Curves”, Journal of Number Theory, 90:1 (2001), 166  crossref
    14. Venkatesan Guruswami, Madhu Sudan, Proceedings of the thirty-second annual ACM symposium on Theory of computing, 2000, 181  crossref
    15. S.G. Vladuts, “Secant Spaces and Clifford's Theorem over Finite Fields”, Finite Fields and Their Applications, 4:1 (1998), 101  crossref
    16. I. Blake, C. Heegard, T. Hoholdt, V. Wei, “Algebraic-geometry codes”, IEEE Trans. Inform. Theory, 44:6 (1998), 2596  crossref
    17. Ruud Pellikaan, Henning Stichtenoth, Fernando Torres, “Weierstrass Semigroups in an Asymptotically Good Tower of Function Fields”, Finite Fields and Their Applications, 4:4 (1998), 381  crossref
    18. V. G. Drinfeld, V. A. Iskovskikh, A. I. Kostrikin, A. N. Tyurin, I. R. Shafarevich, “Yurii Ivanovich Manin (on his 60th birthday)”, Russian Math. Surveys, 52:4 (1997), 863–873  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    19. C. Voss, T. Hoholdt, “An explicit construction of a sequence of codes attaining the Tsfasman-Vladut-Zink bound. The first steps”, IEEE Trans. Inform. Theory, 43:1 (1997), 128  crossref
    20. O. Moreno, D. Zinoviev, V. Zinoviev, “On several new projective curves over F/sub 2/ of genus 3, 4, and 5”, IEEE Trans. Inform. Theory, 41:6 (1995), 1643  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:901
    Full-text PDF :520
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025