Abstract:
A spectral theory is constructed for a special class of operators in a Banach space over a non-Archimedean field. A spectral theorem is proved, and a functional calculus and perturbation theory are constructed.
This publication is cited in the following 13 articles:
J. Ettayb, “O $\lambda$-kommutirovanii, levom (pravom) psevdospektre i levom (pravom) uslovnom psevdospektre lineinykh nepreryvnykh operatorov na ultrametricheskikh banakhovykh prostranstvakh”, Vestnik rossiiskikh universitetov. Matematika, 29:148 (2024), 494–516
Jawad Ettayb, “A Hille-Yosida-Phillips Theorem for Discrete Semigroups on Complete Ultrametric Locally Convex Spaces”, P-Adic Num Ultrametr Anal Appl, 15:2 (2023), 113
Cheuk-Yin Lee, Chi-Wai Leung, “Regularity of certain commutative Banach rings”, Journal of Mathematical Analysis and Applications, 517:1 (2023), 126589
Tinhinane A. Azzouz, “Spectrum of a linear differential equation with constant coefficients”, Math. Z., 296:3-4 (2020), 1613
Chi-Wai Leung, Chi-Keung Ng, “Berkovich spectra of elements in Banach rings”, Journal of Number Theory, 195 (2019), 184
J. Aguayo, M. Nova, J. Ojeda, “Representation Theorems for Operators on Free Banach Spaces of Countable Type”, P-Adic Num Ultrametr Anal Appl, 11:1 (2019), 21
Marian Vâjâitu, “Integral Representations and the Behavior of Krasner Analytic Functions Around Singular Points”, Algebr Represent Theor, 16:6 (2013), 1611
Zifeng Yang, “On the characteristic p valued measure associated to Drinfeld discriminant”, Journal of Number Theory, 132:10 (2012), 2184
Anatoly N. Kochubei, “Non-Archimedean normal operators”, Journal of Mathematical Physics, 51:2 (2010)
Zifeng Yang, “Cn-Functions over completions of Fr[T] at finite places of Fr(T)”, Journal of Number Theory, 108:2 (2004), 346