Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2023, Volume 87, Issue 6, Pages 1185–1209
DOI: https://doi.org/10.4213/im9321e
(Mi im9321)
 

Calculation of hyperelliptic systems of sequences of rank 4

A. A. Illarionov

National Research University "Higher School of Economics", Moscow
References:
Abstract: Formulas for sequences of complex numbers satisfying functional relations of bilinear type are investigated. The results obtained are used in describing all 1-periodic entire functions f,g:CC satisfying f(x+y)g(xy)=ϕ1(x)ψ1(y)++ϕ4(x)ψ4(y) for some ϕj,ψj:CC.
Keywords: addition theorems, elliptic functions, functional equations, nonlinear recurrent sequences.
Funding agency Grant number
Russian Science Foundation 22-41-05001
This work was supported by the Russian Science Foundation under grant 22-41-05001, https://rscf.ru/en/project/22-41-05001/.
Received: 07.02.2022
Revised: 07.10.2022
Bibliographic databases:
Document Type: Article
UDC: 517.965+517.583
MSC: 11B83, 39B32, 11B37
Language: English
Original paper language: Russian

§ 1. Introduction

A sequence h:ZQ satisfying

hm+nhmn=hm+1hm1h2nhn+1hn1h2m
is said to be elliptic. It is known (see [1]) that, except for some degenerate cases, such a sequence is of the form h(n)=σ(nv)σn2(v), where σ is the Weierstrass sigma function, and vC.

Bykovskii (see [2]) set out the following construction.

Definition 1.1. Let A,B:ZC be sequences, not identically zero, such that (for all n,mZ) the expansions

An+mBnm=N0j=1aj(n)bj(m),An+m+1Bnm=N1j=1˜aj(n)˜bj(m)
hold for some sequences aj,bj,˜aj,˜bj:ZC and the smallest possible N0,N1Z+=N{0}. In this case, the pair (A,B) is called a hyperelliptic system of sequences of rank R(A,B)=R0(A,B)+R1(A,B), where
R0(A,B)=N0,R1(A,B)=N1.

Hyperelliptic sequences are closely related to Somos sequences (see [3]), which have many remarkable properties and have been extensively studied (see [2]–[14] and the references there).

The problem of finding sequences satisfying (1.1) is equivalent to the solution of the functional equation

f(x+y)g(xy)=N0+N1j=1ϕj(x)ψj(y)
in the class of 1-periodic functions f,g,ϕj,ψj:CC (see [3]). This equation is closely related to elliptic functions. For example, the addition formula
σ(x+y)σ(xy)=σ2(x)σ2(y)((y)(x))(=(lnσ))
implies that the pair (f,g)=(σ,σ) satisfies (1.1) with N=2. Also, it is known that all non-elementary solutions of equation (1.2) for N=2 (see [15]) and for N=3 (see [16]) can be expressed in terms of the Weierstrass sigma function. In addition, equation (1.2) is a special case, for s=1) of the relations of the form
f1(x1+z)fs(xs+z)g(x1++xsz)=mj=1φj(x1,,xs)ψj(z),
which play an important role in the analysis of (s+1)-linear functional differential equations and addition theorems (see [17]–[19]). In turn, the analysis of (1.4) can be reduced to that of expansion (1.2) (see [16], [20]–[22]).

The functional equation (1.2) has been extensively studied (see [15], [16], [20], [21], [23]–[29] and the references there). However, its general solution is known only for N=1,2 (see [15], [20], [26]) and N=3 (see [16], [28], [29]). The question of the solvability of equation (1.2) for N remains open.

Earlier, in [3] the author of the present paper described all hyperelliptic systems of sequences of rank \leqslant 3, and also of rank 4 under the additional condition A=B.

In the present paper, we describe all hyperelliptic systems of sequences of rank 4. As a corollary, we obtain all 1-periodic solutions of the functional equation (1.2) for N=4. Our analysis is based on the methods and results of [3]. We also employ the ideas and results from [7], [14], [21], [28].

§ 2. Preliminaries

All the results of this section stated without a reference can be found in [3].

2.1. Relation between hyperelliptic systems of sequences and functions

Throughout, we will use the notation

\begin{equation*} e(z)=\exp(2\pi iz),\qquad z\in\mathbb{C}. \end{equation*} \notag

Definition 2.1. Let entire non identically zero functions f,g\colon \mathbb{C}\to\mathbb{C} satisfy (1.2) together with some \phi_j,\psi_j\colon \mathbb{C}\to\mathbb{C} with smallest possible N\in \mathbb{Z}_+. Such a pair (f,g) will be called a solution of the functional equation (1.2), written R(f,g)=N.

Theorem 2.1. Let f,g be 1-periodic entire functions \mathbb{C}\to\mathbb{C} and let A,B\colon \mathbb{Z}\to \mathbb{C} be the sequences of Fourier coefficients in the expansions

\begin{equation} f(z)=\sum_{n\in\mathbb{Z}}A_n e(nz),\quad g(z)=\sum_{m\in\mathbb{Z}}B_m e(mz). \end{equation} \tag{2.1}
Then R(f,g)=R(A,B).

Lemma 2.1 (see [2]). For each hyperelliptic system of sequences (A,B), there exists a positive real constant \lambda_0 \in (0,+\infty) such that

\begin{equation*} |A_n| + |B_n| \leqslant \exp(\lambda_0 n^2), \qquad n\in \mathbb{Z}. \end{equation*} \notag

Consider any \lambda\in \mathbb{C} such that \operatorname{Im} \lambda > \lambda_0/2\pi and define \widetilde A_n = A_n e(n^2\lambda), \widetilde B_n = B_n e(n^2\lambda). The series

\begin{equation} f(z)=\sum_{n\in\mathbb{Z}}\widetilde A_n e(nz),\qquad g(z)=\sum_{n\in\mathbb{Z}}\widetilde B_n e(nz) \end{equation} \tag{2.2}
are absolutely uniformly convergent on each compact set. Hence f, g are 1-periodic entire functions, and R(f, g) = R (\widetilde A, \widetilde B)= R(A,B).

2.2. Equivalence relations

Definition 2.2. Solutions (f,g), (\widetilde f,\widetilde g) of equation (1.2) are called equivalent (written (f,g)\sim (\widetilde f, \widetilde g)) if either (\widetilde f,\widetilde g) = (f_1, g_1) or (\widetilde f,\widetilde g) = (g_1,f_1), where

\begin{equation*} f_1(z) = f(z_0 z -z_1) \cdot e(\alpha z^2+ \beta_1 z+ \gamma_1), \qquad g_1(z) = g(z_0 z -z_2) \cdot e(\alpha z^2+ \beta_2 z+ \gamma_2) \end{equation*} \notag
with some \alpha,\beta_j,\gamma_j, z_j \in \mathbb{C}, j=1,2, z_0\in \mathbb{C}\setminus\{0\}.

It is easy tho check that R(f,g)=R(\widetilde f, \widetilde g) for (f,g)\sim (\widetilde f, \widetilde g) (see [20]).

Consider the following transformations of the system of sequences (A,B):

I) (A,B)\to (B,A);

II) (A,B)\to (A,\widehat B), where \widehat B_n = B_{-n};

III) (A,B)\to (A,\widehat B), where \widehat B_n = B_n e(\beta n+\gamma), \beta,\gamma\in \mathbb{C};

IV) (A,B)\to (A,\widehat B), where \widehat B_n = B_{n+n_0}, n_0\in \mathbb{Z};

V) (A,B)\to (\widehat A,\widehat B), where

\begin{equation*} \widehat A_n = \begin{cases} A_{n/d} &\text{for } n\in d\mathbb{Z}, \\ 0 &\text{otherwise}, \end{cases}\quad \widehat B_n = \begin{cases} B_{n/d} &\text{for } n\in d\mathbb{Z}, \\ 0 &\text{otherwise}, \end{cases}\quad d\in \mathbb{N}; \end{equation*} \notag

VI) (A,B)\to (\widehat A,\widehat B), where \widehat A_n = A_{dn}, \widehat B_n = B_{dn}, d\in \mathbb{N}, provided A_n = B_n = 0 for all n\notin d\mathbb{Z};

VII) (A,B)\to (\widehat A,\widehat B), where \widehat A_n= A_n e(\alpha n^2), \widehat B_n= B_n e(\alpha n^2), \alpha \in \mathbb{C}.

Definition 2.3. If the system of sequences (\widetilde A,\widetilde B) is obtained from a system (A,B) by a composition of transformations of type I)–VII) (of type I)–VI, respectively)), then (\widetilde A,\widetilde B), (A,B) are called equivalent (strongly equivalent) systems, written (A,B)\sim (\widetilde A, \widetilde B) ((A,B)\stackrel{s}{\sim} (\widetilde A, \widetilde B), respectively).

The following properties hold.

1. The binary relations \sim and \stackrel{s}{\sim} are equivalence relations on the set of hyperelliptic systems of sequences.

2. Let f, g, \widetilde f, \widetilde g be 1-periodic entire functions. Then (f,g)\sim (\widetilde f, \widetilde g) if and only if \Phi(f,g)\stackrel{s}{\sim} \Phi(\widetilde f, \widetilde g). Here, \Phi(f,g) = (A,B), where A and B are the sequences of Fourier coefficients (from expansions (2.1) of functions f and g, respectively.

3. If a pair (\widetilde A,\widetilde B) is obtained from a pair (A,B) by transformations of type I), II), III), VII), then R_j(A,B)= R_j(\widetilde A,\widetilde B), j=0,1.

4. If (A,B)\sim (\widetilde A,\widetilde B), then R(A,B)= R(\widetilde A,\widetilde B).

Remark 2.1. If the system of sequences (\widetilde A,\widetilde B) is obtained from (A,B) by means of a transformation of type V) or VI), then R_j(A,B)\neq R_j(\widetilde A,\widetilde B), j=0,1 in general.

If a transformation of type IV) is used, then R_j(A,B) = R_j(\widetilde A,\widetilde B), j=0,1 if n_0 is odd and R_0(A,B) = R_1(\widetilde A,\widetilde B), R_1(A,B) = R_0(\widetilde A,\widetilde B) if it is even.

2.3. Determinant equations

Given sequences A, B: \mathbb{Z}\to \mathbb{C} and integers n_0,\dots, n_k, m_0,\dots, m_k, consider the determinants

\begin{equation*} \begin{aligned} \, D_{A,B}\begin{pmatrix} n_0 & \dots & n_k \\ m_0 & \dots & m_k \end{pmatrix} &=\begin{vmatrix} A_{n_0+m_0} B_{n_0-m_0} & \dots & A_{n_0+m_k}B_{n_0-m_k} \\ \vdots & & \vdots \\ A_{n_k+m_0} B_{n_k-m_0} & \dots & A_{n_k+m_k} B_{n_k-m_k} \end{vmatrix}, \\ \widetilde D_{A,B}\begin{pmatrix} n_0 & \dots & n_k \\ m_0 & \dots & m_k \end{pmatrix} &= \begin{vmatrix} A_{n_0+m_0+1} B_{n_0-m_0} & \dots & A_{n_0+m_k+1}B_{n_0-m_k} \\ \vdots & & \vdots \\ A_{n_k+m_0+1} B_{n_k-m_0} & \dots & A_{n_k+m_k+1} B_{n_k-m_k} \end{vmatrix}. \end{aligned} \end{equation*} \notag
In what follows, we will write D(\,{\dots}\,) and \widetilde D(\,{\dots}\,) in place of D_{A,B}(\,{\dots}\,) and \widetilde D_{A,B}(\,{\dots}\,), respectively, if no confusion will ensue.

Lemma 2.2. Let A, B \colon \mathbb{Z}\to \mathbb{C}, A,B \not\equiv 0, and k\in \mathbb{Z}_+. Then

1) the inequality R_0(A,B)\leqslant k is equivalent to the relation

\begin{equation*} D\begin{pmatrix} n_0 & \dots & n_k \\ m_0 & \dots & m_k \end{pmatrix} =0 \end{equation*} \notag
for all n_0,\dots, n_k, m_0,\dots, m_k;

2) the inequality R_1(A,B)\leqslant k is equivalent to the relation

\begin{equation*} \widetilde D\begin{pmatrix} n_0 & \dots & n_k \\ m_0 & \dots & m_k \end{pmatrix} =0 \end{equation*} \notag
for all n_0,\dots, n_k, m_0,\dots, m_k.

2.4. A special case

Lemma 2.3. Let c_1,c_2\in \mathbb{C}, c_1c_2\neq 0, \beta\in \mathbb{C},

\begin{equation*} A_n = \begin{cases} c_1, &n\equiv 0\ (\operatorname{mod} 2), \\ e(\beta n), &n\equiv 1\ (\operatorname{mod} 2), \end{cases}\quad B_n = \begin{cases} c_2, &n\equiv 0\ (\operatorname{mod} 2), \\ e(\beta n), &n\equiv 1\ (\operatorname{mod} 2). \end{cases} \end{equation*} \notag

Then R_j(A,B)\geqslant 2, j=0,1 if and only if either \beta \notin \frac{1}{4}\mathbb{Z} or c_1\neq \pm c_2 and e(\beta) c_1c_2 \neq \pm 1.

Proof. 1. Let \beta \in \frac{1}{4}\mathbb{Z}, and let c_1 = \pm c_2 or c_1c_2 e(\beta)= \pm 1. Note that (A,B)\sim (\widetilde A,\widetilde B), \widetilde A_{2k} = c_1, \widetilde B_{2k} = c_2, \widetilde A_{2k+1} = \widetilde B_{2k+1} = c_0, where c_0 = e(\beta) for \beta \in \frac{1}{2} \mathbb{Z}, and c_0 = e(\beta-1/8) for \beta \notin \frac{1}{2} \mathbb{Z}. Actually, if \beta \in \frac{1}{2} \mathbb{Z}, then (A,B)=(\widetilde A,\widetilde B). If \beta \notin \frac{1}{2} \mathbb{Z}, then is suffices to put \widetilde A_n = A_n S_n, \widetilde B_n = B_n S_n, where S_n = e(n(n-2)/8).

If c_1=\pm c_2, then

\begin{equation*} \widetilde A_{n+m+1} \widetilde B_{n-m}\equiv \begin{cases} c_0c_1 &\text{for } c_1=c_2, \\ c_0c_2 (-1)^n (-1)^m &\text{for } c_1=-c_2. \end{cases} \end{equation*} \notag
Hence R_1(A,B)=R_1(\widetilde A,\widetilde B)=1. If c_1c_2 e(\beta)= \pm 1, then c_1c_2 = \pm c_0^2, and
\begin{equation*} \widetilde A_{n+m}\widetilde B_{n-m}\equiv \begin{cases} c_0^2 &\text{for } c_1c_2=c_0^2, \\ c_1 c_2 (-1)^n (-1)^m &\text{for } c_1c_2=-c_0^2. \end{cases} \end{equation*} \notag
Therefore, R_0(A,B)=R_1(\widetilde A,\widetilde B)=1.

2. Let R_0(A,B)<2 or R_1(A,B)<2. Then, for each odd n,

\begin{equation*} D\begin{pmatrix} n & 0 \\ n & 0 \end{pmatrix} = c_1^2c_2^2 - e(2n\beta) =0 \quad \text{or}\quad \widetilde D\begin{pmatrix} n & 0 \\ n & 0 \end{pmatrix} = c_2^2e(2\beta(n+1))-c_1^2 = 0. \end{equation*} \notag
The first case is possible only for \beta \in \frac{1}{4}\mathbb{Z}, c_1c_2 e(\beta)= \pm 1, and the second one, for \beta \in \frac{1}{4}\mathbb{Z}, c_1=\pm c_2. This proves Lemma 2.3.

§ 3. The main results

Let L be a lattice in \mathbb{C} (a discrete additive subgroup of the field \mathbb{C}) and \sigma_L\colon \mathbb{C}\,{\to}\, \mathbb{C} be the Weierstrass sigma function associated with (possibly degenerate) lattice L. By \mathbb{Z}_d^* we denote the reduced residue system modulo d.

Theorem 3.1. Let at least one of sequences A or B have infinitely many non-zero terms. Then R(A,B)=4 if and only if (A,B)\sim (\widetilde A,\widetilde B), where the system (\widetilde A,\widetilde B) is one of the following five types:

1) \widetilde A_n = \sigma_L(nv+u_1), \widetilde B_n = \sigma_L(nv+u_2), where v\in \mathbb{C}\setminus (\frac{1}{2} L), u_1,u_2\in \mathbb{C};

2) \widetilde A\equiv 1, \widetilde B_n = n +c, where c\in \mathbb{C};

3) \widetilde A\equiv 1, \widetilde B_n = 1+c e(\beta n), where c\in \mathbb{C}\setminus\{0\}, \beta\in \mathbb{C}\setminus \mathbb{Z};

4) \displaystyle \widetilde A_n = \begin{cases} c_1 &\text{if } n\equiv 0 \ (\operatorname{mod} d), \\ e(\beta n) &\text{if } n\equiv t \ (\operatorname{mod} d), \\ 0 &\text{otherwise}, \end{cases}\quad \widetilde B_n = \begin{cases} c_2 &\text{if } n\equiv 0 \ (\operatorname{mod} d), \\ e(\beta n) &\text{if } n\equiv t \ (\operatorname{mod} d), \\ 0 &\text{otherwise}, \end{cases} where d\in \mathbb{N}, d\geqslant 2, t\in \mathbb{Z}_d^*, t\not\equiv d \pmod 2, c_1,c_2 \in \mathbb{C}\setminus\{0\}, \beta \in \mathbb{C}, and if d=2, \beta\in \frac{1}{4}\mathbb{Z}, then c_1\neq \pm c_2, c_1c_2 e(\beta)\neq \pm 1;

5) \displaystyle \widetilde A_n = \begin{cases} c &\text{if } n\equiv 0 \ (\operatorname{mod} d), \\ e(\beta n) &\text{if } n\equiv t \ (\operatorname{mod} d), \\ 0 &\text{otherwise}, \end{cases}\quad \widetilde B_n = \begin{cases} 1 &\text{if } n\equiv 0 \ (\operatorname{mod} d), \\ 0 & \text{otherwise}, \end{cases} where c\in \mathbb{C}\setminus\{0\}, \beta\in \mathbb{C}, d\in \mathbb{Z}, d\geqslant 2, t\in \mathbb{Z}_d^*, t\not\equiv d \pmod 2.

Let

\begin{equation*} \operatorname{supp} A = \{n\in \mathbb{Z}\colon A_n\neq 0\}, \qquad \operatorname{supp}B= \{m\in \mathbb{Z}\colon B_m\neq 0\}. \end{equation*} \notag

In what follows, |X| is the cardinality of X.

Lemma 3.1. Let R(A,B)=4, and let \operatorname{supp}B (or \operatorname{supp} A) be bounded from above or below. Then |{\operatorname{supp} A}|\leqslant 4 and |{\operatorname{supp}B}|\leqslant 4.

In view of Lemma 3.1 the case where A or B has a finite number of non-zero terms is devoid of interest.

Theorem 3.1 and Lemma 3.1 will be proved in § 7.

A function Q\colon \mathbb{C} \to \mathbb{C} is called a quasi-polynomial of rank r if

\begin{equation*} Q(z) = \sum_{j=1}^s P_j(z) e(\lambda_j z),\qquad r = \sum_{j=1}^s (1+ \deg P_j), \end{equation*} \notag
where \lambda_j are different complex numbers and P_j are polynomials of degree \deg P_j. If a function Q is 1-periodic, then \deg P_j = 0, \lambda_j\in \mathbb{Z}.

It is easy to see that each pair of quasi-polynomials is a solution of the functional equation (1.2) for some N.

Definition 3.1. A solution (f,g) of the functional equation (1.2) is said to be elementary if (f,g)= (h Q_1,h Q_2), where Q_1, Q_2 are quasi-polynomials, and h(z)=e(\alpha z^2), \alpha\in \mathbb{C}.

Let

\begin{equation*} \tau\in \mathbb{C}, \quad \Omega = \begin{pmatrix}\omega_{11} & \omega_{12} \\ \omega_{12} & \omega_{22}\end{pmatrix},\qquad \omega_{11}, \omega_{12}, \omega_{22}\in \mathbb{C}, \end{equation*} \notag
where \operatorname{Im} \tau>0 and \operatorname{Im} \Omega is positive definite. Recall that the theta functions \theta =\theta(\,{\cdot}\,;\tau)\colon \mathbb{C}\to \mathbb{C} and \Theta(\,{\cdot}\,; \Omega)\colon \mathbb{C}^2 \to \mathbb{C} are defined by the Fourier series
\begin{equation*} \begin{aligned} \, \theta(z;\tau) &= \sum_{k\in \mathbb{Z}} \exp(2\pi i k z + \pi ik^2 \tau) \equiv \sum_{k\in \mathbb{Z}} e(k z) e\biggl(\frac{k^2 \tau}2\biggr), \\ \Theta(z_1,z_2; \Omega) &= \sum_{n_1,n_2\in \mathbb{Z}} e\biggl( n_1z_1+ n_2z_2 + \frac{\omega_{11} n_1^2+ 2\omega_{12} n_1n_2+\omega_2 n_2^2}{2} \biggr). \end{aligned} \end{equation*} \notag

The following result will be obtained in § 7 via Theorems 2.1 and 3.1.

Corollary 3.1. Let N=4. Then, up to an equivalence, the set of 1-periodic non-elementary solutions of equation (1.2) coincides with the set of pairs (f,g) of the following three types

\begin{equation} 1)\quad f(z)= \Theta(z,u_1;\Omega), \qquad g(z)= \Theta(z,u_2;\Omega), \end{equation} \tag{3.1}
where u_1,u_2\in \mathbb{C}, and \omega_{12}\notin (\frac{1}{2}\mathbb{Z} + \frac{\omega_{22}}{2}\mathbb{Z});
\begin{equation} 2)\quad f(z)= c_1\theta'(z;\tau)+c_2\theta(z;\tau), \qquad g(z)= c_3\theta'(z;\tau)+c_4\theta(z;\tau), \end{equation} \tag{3.2}
where c_j\in \mathbb{C}, and (c_1,c_3)\neq 0;
\begin{equation} 3)\quad f(z)= c_1\theta (dz;\tau)+ \theta (dz+z_0;\tau) e(tz), \qquad g(z)= c_2\theta (dz;\tau)+ \theta (dz+z_0;\tau) e(tz), \end{equation} \tag{3.3}
where (c_1,c_2)\in \mathbb{C}^2\setminus\{0\}, d\in \mathbb{N}, t\in \mathbb{Z}_d^*, t\not\equiv d \pmod 2, and if c_1c_2\neq 0, d=1, then z_0\notin \frac{1}{2}\mathbb{Z}, and if d=2, z_0-\tau/2 \in \frac{1}{2}\mathbb{Z}, then c_1\neq \pm c_2, c_1 c_2 e(z_0/2-\tau/4)\neq \pm 1.

§ 4. The case R_0(A,B)=1 or R_1(A,B)=1

Lemma 4.1 (see [3]). Let A,B\colon \mathbb{Z}\to \mathbb{C}. Then R(A,B)=1 if and only if |{\operatorname{supp} A}|=|{\operatorname{supp}B}|=1.

Lemma 4.2 (see [3]). Let A,B\colon \mathbb{Z}\to \mathbb{C}. Then R(A,B)=2 if and only if (A,B) satisfies, up to an equivalence, one of the following three conditions:

1) |T_{A}|=2, |T_{B}|=1;

2) T_{A}=T_{B}, and |T_{A}|=2;

3) A\equiv B\equiv 1.

Lemma 4.3 (see[3]). Let A,B\colon \mathbb{Z}\to \mathbb{C}. Then R(A,B)=3 if and only if (A,B) satisfies, up to an equivalence, one of the following three conditions:

1) |T_{A}|=3, |T_{B}|=1;

2) T_{A}=T_{B} = \{0, \pm s\}, where s\in \mathbb{N};

3) A_n=B_n = \begin{cases} c_0 & \text{ for even } n, \\ c_1 & \text{ for odd } n, \end{cases} where c_0,c_1\in \mathbb{C}\setminus \{0\}, c_0\neq c_1.

Lemma 4.4. Let R_0(A,B)=1. Then the system (A,B) satisfies, up to an equivalence, one of the following conditions:

a) \operatorname{supp} A = \{0\}, \operatorname{supp}B \cap 2\mathbb{Z} = \{0\};

b) \operatorname{supp} A =\operatorname{supp}B = \{0, s\}, and s\equiv 1 \pmod{2};

c) \operatorname{supp} A = \operatorname{supp}B= \{0,\pm s\}, and s\equiv 1\pmod 2;

d) A_n=B_{n+1} = \begin{cases} c_0 &\text{if }n\text{ is even}, \\ c_1 &\text{if }n\text{ is odd}, \end{cases} where c_0,c_1\in \mathbb{C}\setminus \{0\}.

Proof. Since R_0(A,B)=1, there exist sequences a,b\colon \mathbb{Z}\to \mathbb{C} such that
\begin{equation} A_{n+m}B_{n-m} = a(n)b(m). \end{equation} \tag{4.1}
Hence a(n+m)b(n-m)=A_{2n}B_{2m}, a(n+m+1)b(n-m)= A_{2n+1}B_{2m+1}, and, therefore, R_j(a,b)\leqslant 1, j=0,1. Consequently, R(a,b)\leqslant 2. In view of Lemmas 4.1 and 4.2 there are four cases to consider.

1. Each of the sequences a and b contains precisely one non-zero term. Assume that a(s)b(t)\neq 0. Setting \widehat a(n) = a(n+s), \widehat b(m) = b(m+t), \widehat A_n = A_{n+s+t}, \widehat B_m = B_{m+s-t}, we have

\begin{equation} \widehat A_{n+m}\widehat B_{n-m} = \widehat a(n)\widehat b(m), \end{equation} \tag{4.2}
where \widehat a(n)\widehat b(m)\neq 0 only if n=m= 0. Hence \widehat A(0)\widehat B(0)\neq 0. Putting m=n (m=-n) in (4.2) m=n (m=-n), we conclude that \widehat A_{2m}=\widehat B_{2m}=0 for any m\neq 0. If there exist n,m such that \widehat A_{2n+1}\widehat B_{2m+1}\neq 0, then \widehat A_{2n+1}\widehat B_{2m+1} = \widehat a(n+m+1)\widehat b(n-m) \neq 0 according to (4.2). Therefore, n+m+1 = n-m =0, which is impossible. So, up to an equivalence, the system (A,B) satisfies condition a).

2. One of the sequences a or b has precisely two non-zero terms, and the other one has precisely one non-zero term. Arguing as in the previous case, we can assume that a(s)a(0)b(0)\neq 0. From (4.1) it follows that A_0 A_sB_0B_s\neq 0. If s\equiv 0 \pmod 2, then a(s/2)b(s/2) = A_s B_0\neq 0. Hence s\equiv 1 \pmod 2. Using (4.1), this gives

\begin{equation*} \begin{gathered} \, A_{2n} B_0 = a(n)b(n), \qquad A_0 B_{2m} = a(m)b(-m), \\ A_{2n+s} B_s = a(n+s)b(n), \qquad A_s B_{2n+s} = a(n+s)b(-n), \end{gathered} \end{equation*} \notag
which shows that \operatorname{supp} A = \operatorname{supp}B = \{0,s\}. Thus, we arrive at case b).

3. The sequence a has precisely two non-zero terms with numbers n_1,n_2 and the sequence b has precisely two non-zero terms with numbers m_1,m_2, where n_2-n_1 = m_2-m_1>0. Without loss of generality we can assume that n_1=m_1 =0 and n_2=m_2 = s. As in the previous case, using (4.1), we find that \operatorname{supp} A = \{0,s,2s\}, \operatorname{supp}B= \{-s,0,s\}, where s\equiv 1\pmod 2.

4. Let (a,b)\sim (1,1). Then \operatorname{supp} A, T_b are arithmetic progressions with the same difference. Without loss of generality we can assume that \operatorname{supp} A = T_b = d\mathbb{Z}, d\in \mathbb{N}. Using (4.1) and arguing as in the previous case, we obtain d\equiv 1 \pmod 2 and \operatorname{supp} A = \operatorname{supp}B = d\mathbb{Z}. Hence (A,B)\sim (\widetilde A,\widetilde B), where \widetilde A_n= A_{nd}, \widetilde B_m= B_{md}. Since R_0(\widetilde A,\widetilde B)=1, Lemma 2.2 shows that, for any integer n,

\begin{equation*} D_{\widetilde A, \widetilde B}\begin{pmatrix} n & 0 \\ 1 & 0 \end{pmatrix} = \begin{vmatrix} \widetilde A_{n+1}\widetilde B_{n-1} & \widetilde A_n\widetilde B_n \\ \widetilde A_1\widetilde B_{-1} & \widetilde A_0\widetilde B_0 \end{vmatrix}=0, \end{equation*} \notag
that is, \widetilde A_{n+1}\widetilde B_{n-1}=c \widetilde A_n\widetilde B_n, where c= \widetilde A_1\widetilde B_{-1} \widetilde A_0^{-1}\widetilde B_0^{-1}. Therefore, \widetilde A_{n+1} = \widetilde B_n c^{n} \widetilde A_1 \widetilde B_0^{-1}. Changing an equivalent system, it can be assumed that \widetilde A_{n+1}= \widetilde B_n. In this case, R_1 (\widetilde A,\widetilde A)=1. So, R(\widetilde A,\widetilde A)\leqslant 3 by Lemma 5.5 in [3]. Using Lemmas 4.14.3 and taking into account that \widetilde A has no zero terms, we conclude that either (\widetilde A,\widetilde A)\sim (1,1) (and hence (A,B)\sim (1, 1)), or \widetilde A_n=c_0 \mu^{n^2}\lambda^n for {n\equiv 0 \pmod 2}, and \widetilde A_n=c_1 \mu^{n^2}\lambda^n for n\equiv 1\pmod 2. In both cases, assertion d) holds up to an equivalence. This proves Lemma 4.4.

Lemma 4.5. Let R(A,B)=4, where R_0(A,B)=1 or R_1(A,B)=1. Then, up to an equivalence, \operatorname{supp} A =\{0\} and \operatorname{supp}B= \{0,n_1,n_2,n_3\}, where n_j\equiv 1\pmod 2.

Proof. Let R_0(A,B)=1. By Lemma 4.4, one of assertions a)–d) is satisfied. If b), c) or d) holds, then R(A,B)\leqslant 3 by Lemmas 4.2, 4.3.

Let a) be satisfied. Consider functions (2.2), where \widetilde A_n = A_n e(n^2\alpha), \widetilde B_n = B_n e(n^2\alpha), and the constant \alpha is chosen so that the series converges. Hence R(f,g)= 4 by Theorem 2.1. Since f \equiv A_0, it follows that g is a quasi-polynomial of rank 4 (see [30]). So, |\operatorname{supp}B|=4. Therefore, \operatorname{supp}B= \{0,n_1,n_2,n_3\}, where n_j\equiv 1\pmod 2.

Let R_1(A,B)=1. Then (A,B)\sim (\widetilde A, B), where \widetilde A_n = A_{n+1}, and R_0(\widetilde A,B)=1. This case was considered above. This proves Lemma 4.5.

§ 5. The structure of the sets \operatorname{supp} A and \operatorname{supp}B with R_0(A,B)=R_1(A,B)=2

The aim of this section is to prove the following lemma.

Lemma 5.1. Let R_0(A,B)=R_1(A,B)=2, where

1) there are no d\in \mathbb{Z}\cap [2,+\infty) and t_1,t_2\in \mathbb{Z} such that \operatorname{supp} A\subset (d\mathbb{Z}+t_1), \operatorname{supp}B\subset (d\mathbb{Z}+t_2);

2) the sets \operatorname{supp} A and \operatorname{supp}B are not bounded from below and above.

Then, up to an equivalence, the system (A,B) satisfies one of the following conditions:

a) \operatorname{supp} A =\mathbb{Z};

b) there exist n,m\in \mathbb{Z} such that A_{n-1}A_n A_{n+1}B_{m-1}B_m B_{m+1}\neq 0;

c) \operatorname{supp} A = d\mathbb{Z} \cup(d\mathbb{Z} + t), \operatorname{supp}B = d \mathbb{Z}, where d\not\equiv t \pmod 2, \operatorname{\textrm{gcd}}(d,t)=1;

d) \operatorname{supp} A = \operatorname{supp}B= d\mathbb{Z} \cup(d\mathbb{Z} + t), where d\not\equiv t \pmod 2, \operatorname{\textrm{gcd}}(d,t)=1.

All the remaining results in this section are auxiliary, and will not be used in the following sections.

Remark 5.1. In this section, we will use three types of transformation of a system (A,B) to an equivalent system

1) (A,B)\to (B,A);

2) (A,B)\to (A,\widetilde B), where \widetilde B_n = B_{n+n_0};

3) (A,B)\to (A,\widetilde B), where \widetilde B_n = B_{-n}.

Elements of the set \operatorname{supp} A (the set \operatorname{supp}B) will be denoted by n_i (by m_j), where

\begin{equation*} n_{-1}< n_0 <n_1<\cdots, \qquad m_{-1}< m_0 <m_1<\cdots. \end{equation*} \notag
The choice of the points n_0, m_0 is immaterial, but the important point here is that
\begin{equation*} A_{n_i}\neq 0, \quad A_n = 0\text{ for }n_i<n< n_{i+1},\quad B_{m_j}\neq 0, \quad B_m = 0 \text{ for } m_j <m< m_{j+1} \end{equation*} \notag
for all i,j\in \mathbb{Z}.

Lemma 5.2. Let R_0(A,B)=R_1(A,B)=2, and let n_i\equiv n_{i+1}, m_j\equiv m_{j+1}\pmod 2. Then n_{i+1}-n_i=m_{j+1}-m_j.

Proof. Without loss of generality we can assume that n_i=m_j=0 (otherwise we change to an equivalent system (\widetilde A,\widetilde B), where \widetilde A_n = A_{n+n_i}, \widetilde B_m = B_{m+m_j}). We have n_{i+1}=2s, m_{j+1}=2t, where s,t\in \mathbb{N}. By definition, B_t = A_s=0. We claim that s=t. Assume that s\neq t (for example, s>t). Hence 0<s+t < 2s, and, therefore, A_{s+t}=0. Hence
\begin{equation*} D\begin{pmatrix} 0 & t & s \\ 0 & -t & s \end{pmatrix} = \begin{vmatrix} A_0B_0 & 0 & 0 \\ \ast & A_0 B_{2t} & 0 \\ \ast & \ast & A_{2s} B_0 \end{vmatrix} \neq 0. \end{equation*} \notag
This contradicts Lemma 2.2. Here and in what follows, “\ast” will denote the elements whose values have no effect on the determinant of the corresponding matrix. Therefore, s=t, completing the proof.

Lemma 5.3. Under the hypotheses of Lemma 5.1, let the sequence \operatorname{supp} A contain three neighbouring terms of the same parity. Then assertion c) of Lemma 5.1 is satisfied up to an equivalence.

Proof. Without loss of generality we can assume that -2t, 0, 2q are three neighbouring terms of the sequence \operatorname{supp} A; t,q\in \mathbb{N}. Note that A_{-t} = A_{q}=0. We can also assume without loss of generality that B_0\neq 0.

1. We claim that q=t. Indeed, otherwise A_{q-t}=0 and

\begin{equation*} D\begin{pmatrix} -t & 0 & q \\ -t & 0 & q \end{pmatrix} = \begin{vmatrix} A_{-2t}B_0 & 0 & 0 \\ \ast & A_0 B_0 & 0 \\ \ast & \ast & A_{2q} B_0 \end{vmatrix} \neq 0, \end{equation*} \notag
but this contradicts Lemma 2.2. Hence q=t, and so
\begin{equation*} A_{-t}=A_t =0, \qquad A_{-2t}A_0A_{2t} \neq 0. \end{equation*} \notag

2. We claim that \operatorname{supp}B does no contain three neighbouring terms such that

\begin{equation*} m_j\equiv m_{j+1}\not\equiv m_{j+2} \pmod 2 \quad\text{or}\quad m_j\not\equiv m_{j+1}\equiv m_{j+2} \pmod 2. \end{equation*} \notag
Assume on the contrary that, for example, m_j\equiv m_{j+1}\not\equiv m_{j+2} \pmod 2 (the second case is reduced to this by the substitution (A,B)\to (A,\widetilde B), where \widetilde B_n = B_{-n}). We have m_{j+1}-m_j = 2t by Lemma 5.2. Without loss of generality we can assume that m_{j+1}=0. Hence
\begin{equation*} m_j=-2t, \quad m_{j+1}=0, \quad m_{j+2} = 2s+1 \qquad (s\in \mathbb{Z}_+). \end{equation*} \notag
Since -2t< 2s+1 - 2t < 2s+1 and 2s+1 - 2t \neq 0, we have B_{2s+1 - 2t}=0,
\begin{equation*} \widetilde D\begin{pmatrix} s-t & s & t+s \\ -s-t-1 & -s-1 & t-s-1 \end{pmatrix} = \begin{vmatrix} A_{-2t}B_{2s+1} & 0 & 0 \\ \ast & A_0 B_{2s+1} & 0 \\ \ast & \ast & A_{2t} B_{2s+1} \end{vmatrix} \neq 0, \end{equation*} \notag
which contradicts Lemma 2.2.

3. Let us verify that \operatorname{supp}B does not contain three neighbouring terms of the same parity. Assume on the contrary that there exist m_j\equiv m_{j+1}\equiv m_{j+2}\pmod 2. Hence m_{j+1}-m_j = m_{j+2}-m_{j+1}=2t by Lemma 5.2. Without loss of generality we can assume that m_{j+1}=0. Hence m_{j}=-2t, m_{j+2}=2t. We claim that \operatorname{supp} A, \operatorname{supp}B \subset 2\mathbb{Z}. Indeed, let 2n+1 be the smallest (in absolute value) odd number from \operatorname{supp} A\cup \operatorname{supp}B. By symmetry we can assume that 2n+1 \in \operatorname{supp} A\,\cap \, \mathbb{N}. Since 2n+1> 2t, we have A_{2n+1-2t}=0. Next B_{\pm t} =0, and so

\begin{equation*} \widetilde D\begin{pmatrix} n-t & n & n+t \\ n+t & n & n-t \end{pmatrix} = \begin{vmatrix} A_{2n+1}B_{-2t} & 0 & 0 \\ \ast & A_{2n+1} B_0 & 0 \\ \ast & \ast & A_{2n+1} B_{2t} \end{vmatrix} \neq 0. \end{equation*} \notag
Therefore, \operatorname{supp} A, \operatorname{supp}B \subset 2\mathbb{Z}, which contradicts condition 1) of Lemma 5.1.

4. From steps 2, 3 of the proof, it follows that the terms of the sequence \operatorname{supp}B have alternating parity, that is, m_j\not\equiv m_{j+1}\pmod 2 for all j. We claim that m_{j+2}-m_j = 2t for all j. Without loss of generality we can assume that

\begin{equation*} m_j =0, \quad m_{j+1}= 2k+1, \quad m_{j+2}= 2s, \qquad 0\leqslant k < s. \end{equation*} \notag
Let us show that s=t. Suppose the contrary. If t<s, then B_{2t}=0,
\begin{equation*} D\begin{pmatrix} -t & 0 & t \\ -t & 0 & t \end{pmatrix} = \begin{vmatrix} A_{-2t}B_0 & \ast & \ast \\ 0 & A_0 B_0 & \ast \\ 0 & 0 & A_{2t} B_0 \end{vmatrix} \neq 0. \end{equation*} \notag
Next, if t>s, then A_{t-s}=A_{2t-s}=0,
\begin{equation*} D\begin{pmatrix} 0 & t & t+s \\ 0 & t & t-s \end{pmatrix} = \begin{vmatrix} A_0B_0 & 0 & 0 \\ \ast & A_{2t} B_0 &0 \\ \ast & \ast & A_{2t} B_{2s} \end{vmatrix} \neq 0. \end{equation*} \notag
Both cases are impossible. Hence t=s, m_{j+2}-m_j = 2t for all j.

5. By step 4 it can be assumed that \operatorname{supp}B = 2t\mathbb{Z} \,{\cup}\, (2t\mathbb{Z}+2k+1), where 0\leqslant k< t, and -2t,0,2t are three neighbouring terms of \operatorname{supp} A.

6. We claim that \operatorname{supp} A\subset 2\mathbb{Z}. Assume the contrary. Let 2n+1 be the smallest (in absolute value) odd number from \operatorname{supp} A. Without loss of generality we can assume that n\geqslant 0. Hence 2n+1 > 2t and A_i=0 for all odd i such that |i|<2n+1. Since 0<n-k< n+k+1< 2n+1, n-k\not\equiv n+k+1 \pmod 2, we have A_{n-k}A_{n+k+1}=0. A similar analysis shows that A_{t+n-k}A_{n+k+1+t}=0. Therefore,

\begin{equation*} \begin{aligned} \, &D\begin{pmatrix} 0 & t & n+k+1 \\ 0 & t & n-k \end{pmatrix} \\ &\qquad= \begin{vmatrix} A_0B_0 & 0 & A_{n-k}B_{k-n} \\ 0 & A_{2t}B_0 & A_{t+n-k}B_{t-n+k} \\ A_{n+k+1}B_{n+k+1} & A_{n+k+1+t}B_{n+k+1-t} & A_{2n+1} B_{2k+1} \end{vmatrix} \neq 0. \end{aligned} \end{equation*} \notag

7. Since \operatorname{supp} A\subset 2\mathbb{Z}, we have \operatorname{supp} A = 2t \mathbb{Z} by step 1 of the proof. It remains to take into account that \operatorname{\text{gcd}}(2t,2k+1)=1 by condition 1) of Lemma 5.1. This proves Lemma 5.3.

Lemma 5.4. Under the hypotheses of Lemma 5.1, let the sequence \operatorname{supp}B do not contain three neighbouring terms of the same parity, and there exist integer i and j such that

\begin{equation} n_i\not\equiv n_{i+1}\not\equiv n_{i+2}\pmod 2, \qquad m_{j}\equiv m_{j+1}\pmod 2. \end{equation} \tag{5.1}

Then

a) if condition (5.1) implies that

\begin{equation} m_{j+1}-m_{j-1} = m_{j+2}-m_j = n_{i+1}-n_i = n_{i+2}-n_{i+1}, \end{equation} \tag{5.2}
then assertion c) of Lemma 5.1 holds up to an equivalence;

b) otherwise, assertion a) or b) of Lemma 5.1 holds.

Proof. a) Let condition a) be satisfied. Without loss of generality we can assume that n_i=m_j=0. We have
\begin{equation*} n_i=0, \quad n_{i+1}= d, \quad n_{i+2} = 2d, \qquad m_j = 0, \quad m_{j+1}=2l, \quad m_{j+2} = d, \end{equation*} \notag
where d= 2k+1, k,l\in \mathbb{N}, k\geqslant l.

1. We claim that \operatorname{supp} A = d\mathbb{Z}. In view of condition a), to this end it suffices to show that the parity of the elements of the sequence \operatorname{supp} A alternates. Assume the contrary. Let n_q be the smallest (in absolute value) number from \operatorname{supp} A such that n_q\equiv n_{q+1}\pmod 2. Changing to an equivalent system it can be assumed that n_q=n_{i+2}. Hence n_{i+3}-n_{i+2}= 2l by Lemma 5.2, that is, n_{i+3}= 2(l+ d). Since

\begin{equation*} d< l+d\leqslant k+d < 2d, \qquad d< d+2l < 2d, \qquad 0<l< 2l, \end{equation*} \notag
we have A_{l+d}=A_{d+2l}= B_l =0. Therefore,
\begin{equation*} D\begin{pmatrix} 0 & l & l+d\\ 0 & -l & l+d \end{pmatrix} = \begin{vmatrix} A_0B_0 & 0 & 0 \\ \ast & A_0B_{2l} & 0 \\ \ast & \ast & A_{2l+2d} B_0 \end{vmatrix}\neq 0, \end{equation*} \notag
which contradicts Lemma 2.2. Therefore, the parity of the elements of \operatorname{supp} A alternates. So, \operatorname{supp} A = d\mathbb{Z}.

2. We claim that the sequence \operatorname{supp}B\pmod 2 has period 0,0,1,1. Assume the contrary. Since \operatorname{supp}B does not have three neighbouring terms of the same parity and m_j\equiv m_{j+1} \pmod 2, there exists a number l such that

\begin{equation*} m_l\equiv m_{l+1}\not\equiv m_{l+2}\not\equiv m_{l+3}\quad \text{or} \quad m_l\not\equiv m_{l+1}\not\equiv m_{l+2}\equiv m_{l+3} \pmod 2. \end{equation*} \notag
Let m_l\equiv m_{l+1}\not\equiv m_{l+2}\not\equiv m_{l+3} \pmod 2 (the second case is reduced to this one by the substitution \widehat B_n = B_{-n}). By condition (5.2) we have m_{l+2}-m_l = d. Without loss of generality we can assume that m_l=0. Hence
\begin{equation*} \begin{gathered} \, n_i =0, \qquad n_{i+1}= d, \qquad n_{i+2} = 2d, \\ m_{l} = 0,\qquad m_{l+1} = 2l, \qquad m_{l+2} =d, \qquad m_{l+3} = 2s, \end{gathered} \end{equation*} \notag
where d\in \mathbb{N} is odd, l,s\in \mathbb{N}, 2l<d < 2s.

If B_{s+l}\neq 0, then s+l=d. Hence l-s = 2l -d \notin d \mathbb{Z}, and A_{l-s}=0. Therefore, B_{s+l}A_{l-s}=0. Since B_l= B_{d+s}=0, we have

\begin{equation*} D\begin{pmatrix} l & d & s \\ -l & 0 & -s \end{pmatrix} = \begin{vmatrix} A_0B_{2l} & 0 & 0 \\ \ast & A_dB_d & 0 \\ \ast & \ast & A_0 B_{2s} \end{vmatrix} \neq 0. \end{equation*} \notag

3. By the previous step and condition a), we have m_j-m_{j+2}= d for all j. Hence \operatorname{supp}B = d\mathbb{Z} \cup (d\mathbb{Z} + 2l). So, the pair (B,A) satisfies assertion c) of Lemma 5.1.

b) Let condition a) be not met. Then there are numbers i, j, satisfying (5.1) and for which at least one of the relations in (5.2) is not true. Since \operatorname{supp}B does not contain three neighbouring terms of the same parity, we have

\begin{equation*} m_{j-1}\not\equiv m_j \equiv m_{j+1}\not \equiv m_{j+2}\pmod 2. \end{equation*} \notag
We can assume that n_{i+1}-n_i \neq m_{j+1}-m_{j-1} (the remaining cases can be reduced to this). In addition, we can assume that n_{i+1}=m_{j}=0. Hence
\begin{equation*} \begin{gathered} \, n_i=-2k-1, \qquad n_{i+1}= 0, \qquad n_{i+2} = 2t+1, \\ m_{j-1}=-2l-1, \qquad m_j = 0, \qquad m_{j+1}=2s, \end{gathered} \end{equation*} \notag
where k,t,l\in \mathbb{Z}_+, s\in\mathbb{N}, and k\neq s+l.

1. We claim that k=l. Assume on the contrary that k\neq l. Then A_{l-k}B_{k-l}=0. Since B_s=0, we have

\begin{equation*} D\begin{pmatrix} -k-l-1 & 0 & s \\ l-k & 0 & -s \end{pmatrix} = \begin{vmatrix} A_{-2k-1}B_{-2l-1} & \ast & A_{-k-l-s-1}B_{s-k-l-1} \\ 0 & A_0B_0 & 0 \\ A_{s+l-k}B_{s-l+k} & \ast & A_0 B_{2s} \end{vmatrix} = 0. \end{equation*} \notag
Hence A_{s+l-k}B_{s-k-l-1}B_{s-l+k}\neq 0. However, if k>s+l, then A_{s+l-k}=0, and if k<s+l, then -2l-1<s-k-l-1< s-l+k<2s, so B_{s-k-l-1}B_{s-l+k} = 0, a contradiction. Hence k=l.

2. Replacing A_n to \widehat A_n = A_{-n} and using the results of the previous step, we get t=l. So, t=l=k.

3. We claim that m_{j+1}-m_j = 2 (m_j - m_{j-1}), that is, s=2k+1. Assume on the contrary that s\neq 2k+1. Since -2k-1<2s-2k-1< 2s and 2s-2k-1 \neq 0, we have B_{2s-2k-1}=0. Next, since -2k-1< s-2k-1 < 2s, s\neq 2k+1, we have B_{s-2k-1}=0. Further, B_s=0, and so

\begin{equation*} \widetilde D\begin{pmatrix} -k-1 & s-k-1 & k+s \\ -k-1 & -k-s-1 & k-s \end{pmatrix} = \begin{vmatrix} A_{-2k-1}B_0 & 0 & 0 \\ \ast & A_{-2k-1} B_{2s} & 0 \\ \ast & \ast & A_{2k+1} B_{2s} \end{vmatrix} \neq 0. \end{equation*} \notag
Hence s=2k+1, that is, m_{j+1}-m_j = 2 (m_j - m_{j-1}).

4. From the previous steps of the proof it follows that

\begin{equation*} n_i=-d, \quad n_{i+1}= 0, \quad n_{i+2} = d, \qquad m_{j-1}=-d, \quad m_j = 0, \quad m_{j+1}=2d, \end{equation*} \notag
where d=2k+1, k\geqslant 0. We claim that \operatorname{supp} A,\operatorname{supp}B\subset d \mathbb{Z}. Assume the contrary. Let n be the smallest (in absolute number) number from \operatorname{supp} A\cup \operatorname{supp}B not divisible by d. We will consider only the case n\geqslant 0. In this case, n>d, and A_q=B_q=0 for all |q|<n, q\not\equiv 0 \pmod d.

Let n be even, that is, n=2m. Then m\not\equiv 0 \pmod d. Hence A_m = A_{m+d} = 0. In addition, B_d=0. If 2m\in \operatorname{supp} A, then

\begin{equation*} D\begin{pmatrix} -d & d & m \\ 0 & d & m \end{pmatrix} = \begin{vmatrix} A_{-d}B_{-d} & \ast & \ast \\ 0 & A_{2d} B_0 & \ast \\ 0 & 0 & A_{2m} B_0 \end{vmatrix} \neq 0. \end{equation*} \notag
If 2m\in \operatorname{supp}B, then
\begin{equation*} D\begin{pmatrix} -d & d & m \\ 0 & d & -m \end{pmatrix} \neq 0. \end{equation*} \notag

Let n be odd, that is, n=2m+1. Since 2m+1 \not\equiv 0 \pmod d, the numbers m-k, m+k+1 are not divisible by d. Therefore, A_{m-k} = A_{m+k+1}=0. Moreover, B_{2k+1}=0. Hence

\begin{equation*} \begin{alignedat}{2} \widetilde D\begin{pmatrix} -k-1 & k & m \\ -k-1 & k & m \end{pmatrix} &\neq 0 &\quad &\text{if}\quad 2m+1 \in \operatorname{supp} A, \\ \widetilde D\begin{pmatrix} -k-1 & k & m \\ -k-1 & k & -m-1 \end{pmatrix} &\neq 0 &\quad &\text{if}\quad 2m+1 \in \operatorname{supp}B. \end{alignedat} \end{equation*} \notag
Both cases are impossible. So, \operatorname{supp} A,\operatorname{supp}B\subset d \mathbb{Z}.

5. By condition 1) of Lemma 5.1, d=1. Hence A_{-1}A_0A_1\neq 0, B_{-1}B_0B_2\neq 0, B_1=0. If B_{-2}\neq 0, then assertion b) of Lemma 5.1 holds. Let B_{-2}=0. It remains to prove that \operatorname{supp} A =\mathbb{Z}. Suppose the contrary. Let k be the smallest (in absolute value) number such that A_k =0. Without loss of generality we can assume that k>0. Hence A_{k-1}A_{k-2}A_{k-3}\neq 0. Let k=2 (otherwise we need to consider \widetilde A_n = A_{n+k-3}). We have

\begin{equation*} D\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} = \begin{vmatrix} A_1B_{-1} & \ast & \ast \\ 0 & A_{-1} B_{-1} & \ast \\ 0 & 0 & A_0 B_2 \end{vmatrix} \neq 0. \end{equation*} \notag
Therefore, \operatorname{supp} A =\mathbb{Z}, and we have case a) of Lemma 5.1.

Proof of Lemma 5.1. According to Lemmas 5.3, 5.4 it remains to consider the case where the sequences \operatorname{supp} A\pmod 2, \operatorname{supp}B \pmod 2 have the same period 1,1,0,0 or 1,0. Indeed, let the conditions of Lemmas 5.3, 5.4 be not met and let one of the sequences, say \operatorname{supp}B \pmod 2, be not periodic with period 0,1. Then \operatorname{supp}B contains two neighbouring terms of the same parity. If \operatorname{supp} A has three neighbouring terms of the same parity, then we are under the hypotheses of Lemma 5.3. If the sequence \operatorname{supp} A has three neighbouring terms of alternating parity, then we arrive at the conditions of Lemma 5.4. So, \operatorname{supp} A\pmod 2 has period 0,0,1,1. By changing A and B, and repeating the above arguments, we conclude that the sequence \operatorname{supp}B \pmod 2 has period 0,0,1,1.

So, let \operatorname{supp} A\pmod 2, \operatorname{supp}B \pmod 2 have the same period 1,1,0,0 or 1,0. Let us prove that assertion d) of Lemma 5.1 holds up to an equivalence. To this end, it suffices to verify that, for all i, j,

\begin{equation} \begin{gathered} \, n_{i+2}-n_i = m_{j+2}-m_j, \\ n_{i+1}-n_i = m_{j+1}-m_{j}\quad \text{or}\quad n_{i+1}-n_i = m_{j+2}-m_{j+1}. \end{gathered} \end{equation} \tag{5.3}
Consider arbitrary i, j.

1. Let the sequences \operatorname{supp} A\pmod 2, \operatorname{supp}B \pmod 2 have period 1,1,0,0. Then n_i\equiv n_{i+1}\not\equiv n_{i+2}\pmod 2 or n_i\not\equiv n_{i+1}\equiv n_{i+2}\pmod 2. Let n_i\equiv n_{i+1}\not\equiv n_{i+2}\pmod 2 (otherwise we need to consider \widetilde A_n = A_{-n}). By the same reason we can assume that m_j\equiv m_{j+1}\not\equiv m_{j+2}\pmod 2. Hence n_{i+1}-n_i = m_{j+1}-m_j by Lemma 5.2. We can consider only the case

\begin{equation*} n_i=0, \quad n_{i+1} = 2k, \quad n_{i+2} = 2s+1, \qquad m_j=0, \quad m_{j+1} = 2k, \quad m_{j+2} = 2t+1. \end{equation*} \notag
It is remains to prove that s=t. Assume the contrary. Let, for example, s>t. Note that A_k=B_k=0. Besides, we have
\begin{equation*} 0< s-t< k+s-t< s+t-k+1 <s+t+1< 2s+1, \end{equation*} \notag
and hence A_{k+s-t}A_{s+t-k+1}=0, A_{s-t}A_{s+t+1}=0. Therefore,
\begin{equation*} \begin{aligned} \, D\begin{pmatrix} 0 & k & s+t+1 \\ 0 & -k & s-t \end{pmatrix} &= \begin{vmatrix} A_0B_0 & 0 & A_{s-t}B_{t-s} \\ 0 & A_0 B_{2k} & A_{k+s-t}B_{k-s+t} \\ A_{s+t+1}B_{s+t+1} & A_{s+t+1-k}B_{s+t+k+1} & A_{2s+1} B_{2t+1} \end{vmatrix} \\ &= A_0B_0A_0B_{2k}A_{2s+1}B_{2t+1} \neq 0. \end{aligned} \end{equation*} \notag
So, s=t. Hence conditions (5.3) are satisfied.

2. Let the terms of the sequences \operatorname{supp} A, \operatorname{supp}B have alternating parities. Without loss of generality we can assume that

\begin{equation*} n_i=0, \quad n_{i+1} = 2k+1, \quad n_{i+2} = 2t, \qquad m_j=0, \quad m_{j+1} = 2l+1, \quad m_{j+2} = 2s, \end{equation*} \notag
where t\leqslant s.

2.1. Let us prove that n_{i+1}-n_i = m_{j+1}-m_j or n_{i+2}-n_{i+1} = m_{j+1}-m_j. Assume the contrary. Then k\neq l, t\neq k+l+1. Hence A_tB_t = A_{k+l+1}B_{k+l+1}=0. Furthermore, B_{t-k+l}=0, since 0< t-k+l < 2s, t-k+l \neq 2l+1. So,

\begin{equation*} D\begin{pmatrix} 0 & k+l+1 & t \\ 0 & k-l & t \end{pmatrix} = \begin{vmatrix} A_0B_0 & \ast & \ast \\ 0 & A_{2k+1} B_{2l+1} & \ast \\ 0 & 0 & A_{2t} B_0 \end{vmatrix} \neq 0. \end{equation*} \notag

2.2. We next assume that n_{i+1}-n_i = m_{j+1}-m_j, that is, l=k (otherwise we need to consider \widetilde A = A_{-n}). We claim that t=s. Assume the opposite. Then t<s. Since 2k+1<t+s < 2s, we have B_{t+s}=0.

If s\neq 2k+1, then B_s=A_tB_{2s-t}=0,

\begin{equation*} D\begin{pmatrix} 0 & s & t+s \\ 0 & s & t-s \\ \end{pmatrix} = \begin{vmatrix} A_0B_0 & \ast & \ast \\ 0 & A_{2s} B_0 & 0 \\ 0 & \ast & A_{2t} B_{2s} \end{vmatrix} \neq 0, \end{equation*} \notag
and if s=2k+1, then t\neq 2k+1, A_t=A_{2t-s}=0,
\begin{equation*} D\begin{pmatrix} 0 & t & t+s \\ 0 & t & t-s \\ \end{pmatrix} = \begin{vmatrix} A_0B_0 & \ast & \ast \\ 0 & A_{2t} B_0 & 0 \\ 0 & \ast & A_{2t} B_{2s} \end{vmatrix} \neq 0. \end{equation*} \notag
Therefore, t=s. Conditions (5.3) are satisfied. This verifies assertion d) of Lemma 5.1, and, therefore, Lemma 5.1.

§ 6. The case R_0(A,B)=R_1(A,B)=2

If the conditions of Lemma 5.1 are met, then, up to an equivalence, one of the following assertions holds:

i) \operatorname{supp} A =\operatorname{supp}B =\mathbb{Z};

ii) \operatorname{supp} A\neq \mathbb{Z}, \operatorname{supp}B \neq \mathbb{Z} and there exist n,m\in \mathbb{Z} such that

\begin{equation*} A_{n-1}A_n A_{n+1}B_{m-1}B_mB_{m+1}\neq 0; \end{equation*} \notag

iii) \operatorname{supp} A =\mathbb{Z}, \operatorname{supp}B\neq \mathbb{Z}, \operatorname{supp}B\neq 2\mathbb{Z}, \operatorname{supp}B\neq 2\mathbb{Z} + 1;

iv) \operatorname{supp} A = d\mathbb{Z} \cup(d\mathbb{Z} + t), \operatorname{supp}B = d \mathbb{Z}, where d\geqslant 2, d\not\equiv t \pmod 2, and \operatorname{\text{gcd}}(d,t)=1;

v) \operatorname{supp} A = \operatorname{supp}B= d\mathbb{Z} \cup(d\mathbb{Z} + t), where d\geqslant 3, d\not\equiv t \pmod 2, \operatorname{\text{gcd}}(d,t)=1.

The case where \operatorname{supp} A =\mathbb{Z}, and \operatorname{supp}B =2\mathbb{Z} or \operatorname{supp}B =2\mathbb{Z} +1 is contained in assertion iv) with d=2.

Let us consider separately the cases of fulfillment of each of the above assertions.

6.1. Fulfillment of assertion i)

Theorem 6.1. Assume that the sequences A, B contain no zero terms, and

1) there are \alpha,\gamma\in \mathbb{C}\setminus\{0\}, \beta,\delta \in \mathbb{C} such that, for all n\in \mathbb{Z},

\begin{equation*} A_{n+2}B_{n-2} = \alpha A_{n+1}B_{n-1}+\beta A_n B_n,\quad A_{n-2}B_{n+2} = \gamma A_{n-1}B_{n+1}+\delta A_n B_n; \end{equation*} \notag

2) the following relations hold

\begin{equation*} D\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix} = \widetilde D\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix} = \widetilde D\begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & -2 \end{pmatrix}=0; \end{equation*} \notag

3) the inequality \Delta_1\Delta_2\Delta_3\neq 0 holds, where

\begin{equation*} \Delta_1= \begin{vmatrix} A_2B_0 & A_1B_1 \\ A_1 B_{-1} & A_0B_0 \end{vmatrix}, \quad \Delta_2= \begin{vmatrix} A_0B_2 & A_1B_1 \\ A_{-1} B_1 & A_0B_0 \end{vmatrix}, \quad \Delta_3= \begin{vmatrix} A_1B_0 & A_0B_1 \\ A_0 B_{-1} & A_{-1}B_0 \end{vmatrix}. \end{equation*} \notag

Then (A,B)\sim (\widetilde A,\widetilde B), where \widetilde A_n = \sigma_L(nv+u_1), \widetilde B_n = \sigma_L(nv+u_2) (u_1,u_2,v\in \mathbb{C}, and L is any lattice) or \widetilde A\equiv 1, \widetilde B is a quasi-polynomial of rank 2.

Theorem 6.1 was obtained in [14]. Note that the proof (and the result in [14] contains two inaccuracies. First, the condition \alpha \gamma \neq 0 is missing. If \alpha \gamma = 0, then appear new solutions (see [7] or step 3 of the proof of Lemma 6.1). Second, the case when one of the sequences A or B is constant was not considered (in the language of [14] this occurs when one of the points z_1, z_2 is a point) at infinity. For example, if A\equiv c, then B is a quasi-polynomial of rank 2 (see [31]).

Lemma 6.1. Let \operatorname{supp} A =\operatorname{supp}B = \mathbb{Z} and R_0(A,B)=R_1(A,B)=2. Then (A,B)\sim (\widetilde A,\widetilde B), where the system (\widetilde A, \widetilde B) is one of the types 1)–4) in Theorem 3.1.

Proof. If (A,B)\sim (A,A), then the required assertion follows from Theorem 7.1 in [3]. So, in what follows, we will assume that (A,B)\not\sim (A,A).

Condition 2) of Theorem 6.1 is secured by Lemma 2.2. Since

\begin{equation*} D\begin{pmatrix} n & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix} =0, \qquad D\begin{pmatrix} n & 1 & 0 \\ -2 & -1 & 0 \end{pmatrix} =0 \end{equation*} \notag
we have, for some h_1,h_2,g_1,g_2\in \mathbb{C},
\begin{equation*} \begin{aligned} \, \Delta_1 A_{n+2}B_{n-2}- h_1 A_{n+1}B_{n-1}+ g_1 A_n B_n &=0, \\ \Delta_2 A_{n-2}B_{n+2}- h_2 A_{n-1}B_{n+1}+ g_2 A_n B_n &=0. \end{aligned} \end{equation*} \notag
If h_1h_2\Delta_1\Delta_2\Delta_3\neq 0, then the required result follows from Theorem 6.1. Note that if v\in L, then A_n\equiv\sigma_L(u_1), B_n\equiv\sigma_L(u_2) and R(A,B)\leqslant 2. If v\in (\frac{1}{2}L) \setminus L, then by the quasi-periodicity of the Weierstrass sigma function, (A,B)\sim (\widetilde A, \widetilde B), where \widetilde A_{2n}=\widetilde B_{2n}=1, \widetilde A_{2n+1}=c_1, \widetilde B_{2n+1}=c_2. In addition, c_1\neq \pm c_2, c_1c_2 \neq \pm 1 (see Lemma 2.3 for \beta=0). If v\in \frac{1}{2} L, then we get the case 4 of Theorem 3.1, where d=2, t=1, \beta=0.

It remains to consider the cases h_1h_2\Delta_1\Delta_2\Delta_3= 0.

1. Let \Delta_1=0. From the relation

\begin{equation*} D\begin{pmatrix} n & 1 & 0 \\ m & 1 & 0 \end{pmatrix} = \begin{vmatrix} A_{n+m}B_{n-m} & A_{n+1}B_{n-1} & A_nB_n \\ A_{1+m}B_{1-m} & A_2 B_0 & A_1B_1 \\ A_m B_{-m} & A_1B_{-1} & A_0B_0 \end{vmatrix} =0 \end{equation*} \notag
it follows that \lambda(m) A_{n+1}B_{n-1} = \mu(m) A_n B_n, where
\begin{equation*} \lambda(m) = \begin{vmatrix} A_{1+m}B_{1-m} & A_1B_1 \\ A_m B_{-m} & A_0B_0 \end{vmatrix},\qquad \mu(m) = \begin{vmatrix} A_{1+m}B_{1-m} & A_2 B_0\\ A_m B_{-m} & A_1B_{-1} \end{vmatrix}. \end{equation*} \notag

Assume that there exists a‘number m such that \lambda(m)\neq 0. Then A_{n+1}B_{n-1} = c A_n B_n, where c = \mu(m)/\lambda(m). Hence A_{n+1} = B_n c^n A_1 B_0^{-1}, and, therefore, (A,B)\sim (A,A).

Let \lambda(m)= 0 for all m. Then, for \widetilde B_m = B_{-m} we obtain an equation of the type A_{m+1}\widetilde B_{m-1} = c A_m \widetilde B_m. So, we have arrived at the case considered above.

2. The case \Delta_2=0 (or \Delta_3=0) is reduced to the case 1 by the substitution (A,B)\to (B, A) (or by the substitution (A,B)\to (\widetilde A, B), where \widetilde A_n = A_{n-1}).

3. Let h_1h_2 =0, \Delta_1\Delta_2\neq 0. We claim that in this case assertion 4) of Theorem 3.1 is satisfied, where d=2. Let, for example, h_1=0. Then A_{n+2}B_{n-2}= c A_n B_n, c= - g_1/\Delta_1. Without loss of generality we can assume that c=1 (otherwise we consider the equivalent system (\widetilde A,B), where A_n = \widetilde A_n c^{n/2}). The equation A_{n+2}B_{n-2}= A_n B_n splits into the system of two linear first-order difference equations (for A_{2k} and A_{2k+1}), which have the unique solution

\begin{equation} A_{2k} = \lambda_0 B_{2k-2} \quad \biggl(\lambda_0 = \frac{A_0}{B_{-2}}\biggr), \qquad A_{2k+1} = \lambda_1 B_{2k-1} \quad \biggl(\lambda_1 = \frac{A_1}{B_{-1}}\biggr). \end{equation} \tag{6.1}
If \lambda_0=\pm\lambda_1, then A_n=\lambda_0 B_{n-2} for \lambda_0=\lambda_1 and A_n=\lambda_0 (-1)^n B_{n-2} for \lambda_0 = {-}\lambda_1. Hence (A,B)\sim (A,A). Therefore, \lambda_0\neq \pm\lambda_1. Since R_1(A,B)=2, the second equation in (1.1) is satisfied with N_1=2. Choosing m=0,1,2, we obtain three relations, whose right-hand sides are linearly dependent. So, there exist (\alpha_0,\alpha_1,\alpha_2)\in \mathbb{C}^3\setminus\{0\} such that
\begin{equation*} \alpha_2 A_{n+3}B_{n-2}= \alpha_1 A_{n+2}B_{n-1}+ \alpha_0 A_{n+1} B_n. \end{equation*} \notag
Putting n=2k and n=2k+1 in the last equality and using (6.1), we obtain
\begin{equation*} \begin{gathered} \, \alpha_2 \lambda_1 B_{2k+1}B_{2k-2} = (\alpha_1\lambda_0+ \alpha_0\lambda_1)B_{2k}B_{2k-1}, \\ \alpha_2 \lambda_0 B_{2k+2}B_{2k-1} = (\alpha_1\lambda_1+ \alpha_0\lambda_0)B_{2k+1}B_{2k}. \end{gathered} \end{equation*} \notag
If \alpha_2 = 0, then we get from these equalities that \lambda_0=\pm\lambda_1. Hence \alpha_2\neq 0, and, therefore, B_{2k+1}B_{2(k-1)} =\gamma_0 B_{2k} B_{2k-1}, B_{2(k+1)}B_{2k-1} =\gamma_1 B_{2k} B_{2k+1}, where \gamma_0,\gamma_1\in \mathbb{C}. Consequently,
\begin{equation*} \begin{aligned} \, &B_{2k+1} = B_1 B_0^{-1} \gamma_0^k B_{2k}, \quad B_{2k} = B_0 B_{-1}^{-1} \gamma_1^k B_{2k-1} \\ &\Longrightarrow \quad B_{2k+1} = B_1 \biggl(\frac{B_1}{B_{-1}}\biggr)^k (\gamma_0\gamma_1)^{k(k+1)/2}, \quad B_{2k} = B_0 \biggl(\frac{B_1\gamma_1}{B_{-1}}\biggr)^{k} (\gamma_0\gamma_1)^{k(k-1)/2}. \end{aligned} \end{equation*} \notag
In view of (6.1) one can easily check that (A,B)\sim (\widetilde A,\widetilde B), where (\widetilde A,\widetilde B) has a type specified in Lemma 2.3. Using this lemma, we arrive at case 4) of Theorem 3.1, in which d=2. This proves Lemma 6.1.

6.2. Fulfillment of assertion ii)

Lemma 6.2. Let R_0(A,B)\leqslant 2, A_0=B_0 =0, A_1A_2A_3 B_1B_2B_3 \neq 0. Then

a) the sequences A, B are uniquely determined by their terms with numbers from -1 to 4;

b) if A_{-1}B_{-1}=0, then A_k=B_k = 0 for k\notin \{1,2,3,4\};

c) if R_1(A,B)\leqslant 2 and A_{\pm 1}=B_{\pm 1}=\pm 1, then A\equiv B or A_n = B_n (-1)^{n+1}.

Proof. Suppose we know the terms of the sequences A, B with numbers from -2k+1 to 2k+2, where k\in \mathbb{N}. According to Lemma 2.2,
\begin{equation} D\begin{pmatrix} n+1 & 2 & 1 \\ n-1 & 1 & 0 \end{pmatrix} = \begin{vmatrix} A_{2n}B_2 & A_{n+2}B_n & A_{n+1}B_{n+1} \\ A_{n+1}B_{3-n} & A_3 B_1 & A_2B_2 \\ A_n B_{2-n} & 0 & A_1B_1 \end{vmatrix} =0, \end{equation} \tag{6.2}
\begin{equation} D\begin{pmatrix} n+1 & 2 & 1 \\ -n+1 & -1 & 0 \end{pmatrix} = \begin{vmatrix} A_2B_{2n} & A_nB_{n+2} & A_{n+1}B_{n+1} \\ A_{3-n}B_{n+1} & A_1 B_3 & A_2B_2 \\ A_{2-n} B_n & 0 & A_1B_1 \end{vmatrix} =0, \end{equation} \tag{6.3}
\begin{equation} D\begin{pmatrix} n & 2 & 1 \\ n-1 & 1 & 0 \end{pmatrix} = \begin{vmatrix} A_{2n-1}B_1 & A_{n+1}B_{n-1} & A_nB_n \\ A_{n+1}B_{3-n} & A_3 B_1 & A_2B_2 \\ A_n B_{2-n} & 0 & A_1B_1 \end{vmatrix} =0, \end{equation} \tag{6.4}
\begin{equation} D\begin{pmatrix} n & 2 & 1 \\ -n+1 & -1 & 0 \end{pmatrix} = \begin{vmatrix} A_1B_{2n-1} & A_{n-1}B_{n+1} & A_nB_n \\ A_{3-n}B_{n+1} & A_1 B_3 & A_2B_2 \\ A_{2-n} B_n & 0 & A_1B_1 \end{vmatrix} =0 . \end{equation} \tag{6.5}
Taking n=-k in (6.2), (6.3), we evaluate A_{-2k} and B_{-2k}, respectively. Choosing n=k+2 in (6.4), (6.5), and then n=-k, we evaluate A_{2k+3} and B_{2k+3}, as well as A_{-2k-1} and B_{-2k-1}. Setting n=k+2 in (6.2), (6.3), we evaluate A_{2k+4} and B_{2k+4}. Now assertion a) easily follows by induction.

Let us verify b). Let, for instance, A_{-1}=0. Choosing in (6.5) n=0, we get B_{-1}=0. Choosing n=-1 in (6.2)(6.5), we find that A_{-2}=0, B_{-2}=0, A_{-3}=0, B_{-3}=0. Continuing the process, we conclude that A_n=B_n=0 for n\notin\{1,2,3,4\}.

Let us prove c). Choosing n=2 and n=3 in the equality

\begin{equation*} D\begin{pmatrix} n & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} = \begin{vmatrix} A_{n+1}B_{n-1} & A_{n-1}B_{n+1} & \ast \\ 0 & 0 & 1 \\ -1 & -1 & \ast \end{vmatrix} = A_{n+1}B_{n-1}- A_{n-1}B_{n+1} =0, \end{equation*} \notag
we obtain A_3=B_3 and A_4B_2 = B_4A_2, respectively. Since
\begin{equation*} \widetilde D\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} = \begin{vmatrix} \ast & A_2B_3 & A_3B_2 \\ \ast & B_2 & A_2 \\ -A_2 & 0 & 0 \end{vmatrix} = -A_2 (A_2^2B_3 -B_2^2A_3)=0, \end{equation*} \notag
we have A_2^2 = B_2^2. There are two cases to consider.

1. Let A_2=B_2. Then A_n = B_n for -1\leqslant n\leqslant 4. Since R_0(A, B)=R_0(B,A)\leqslant 2 and (A_n, B_n) = (B_n,A_n) for -1\leqslant n\leqslant 4, we have (A,B)=(B,A) by assertion a). So, A\equiv B.

2. Let A_2=-B_2. Then A_n=B_n for n=\pm 1, 3 and A_n=-B_n for n=2,4. Putting \widetilde B_n = B_n(-1)^{n+1}, we have R_0(A,\widetilde B)\leqslant 2 and A_n = \widetilde B_n for -1\leqslant n \leqslant 4. As in the previous case, we have A_n=\widetilde B_n, proving Lemma 6.2.

Lemma 6.3. Let R_0(A,B)=R_1(A,B)=2 and let assertion ii) hold. Then (A,B)\sim (\widetilde A, \widetilde B), where (\widetilde A, \widetilde B) satisfies one of the conditions:

1) \widetilde A_n=\widetilde B_n =0 for n\notin\{1,2,3,4\}, \widetilde A_1\widetilde A_2\widetilde A_3\widetilde B_1 \widetilde B_2\widetilde B_3\neq 0, and \widetilde A_4\neq 0 or \widetilde B_4\neq 0;

2) \widetilde A_n=\widetilde B_n = \sigma_L(nv), where v\notin \frac{1}{2}L;

3) assertion 4) of Theorem 3.1 holds, where d=2 and c_1=c_2.

Proof. By ii), there exist s, t such that
\begin{equation*} A_s=0,\quad A_{s+1}A_{s+2}A_{s+3}\neq 0, \qquad B_t=0,\quad B_{t+1}B_{t+2}B_{t+3}\neq 0. \end{equation*} \notag
Without loss of generality we can assume that s=t=0.

If A_{-1}B_{-1}=0, then A_n=B_n =0 for n\notin\{1,2,3,4\} by Lemma 5.2. Furthermore, A_4\neq 0 or B_4\neq 0, for otherwise R(A,B)=3 according to Lemma 4.3.

Let A_{-1}B_{-1}\,{\neq}\, 0. We can assume that A_{\pm 1} = B_{\pm 1} = \pm 1 (otherwise we can consider an equivalent system (\widetilde A,\widetilde B), where \widetilde A_n = A_ne(\alpha_1 n +\beta_1), B_m= B_me(\alpha_2 m + \beta_2), the coefficients \alpha_1, \alpha_2, \beta_1, \beta_2 are chosen so that \widetilde A_{\pm 1}=\widetilde B_{\pm 1}= \pm 1). From Lemma 6.2, c), we have A_n= B_n, up to an equivalence. Therefore, R_0(A,A)=R_1(A,A)=2. It remains to invoke Theorem 7.1 in [3], completing the proof.

6.3. Fulfillment of assertion iii)

Lemma 6.4. Let R_0(A,B)\leqslant 2 and \operatorname{supp} A =\mathbb{Z}, B_0=0. Then the set Z_B = \{m\in \mathbb{Z}\colon B_m=0\} is a subgroup of the group (\mathbb{Z},+).

Proof. By the conditions, there exist a_1,a_2,b_1,b_2\colon \mathbb{Z}\to \mathbb{C} such that
\begin{equation} A_{n+m}B_{n-m} = \vec{a}(n)\cdot \vec{b}(m), \end{equation} \tag{6.6}
where \vec{a}=(a_1,a_2), \vec{b}=(b_1,b_2), \vec{a}(n)\cdot \vec{b}(m) = a_1(n)b_1(m)+a_2(n)b_2(m).

Since A has no zero terms, we have \vec{a}(n)\neq 0 and \vec{b}(n)\neq 0 for all integer n. Let t\in Z_B be arbitrary. Then \vec{a}(0)\vec{b}(0) =\vec{a}(0)\vec{b}(-t) =0. Since \vec{a}(0)\neq 0, the vectors \vec{b}(0), \vec{b}(-t) are linearly dependent (over \mathbb{C}). Hence c_0 \vec{b}(0) = c_1 \vec{b}(-t), where c_0c_1\neq 0. Now the equality c_1A_{n-t}B_{n+t} = c_0 A_nB_n holds by (6.6). Putting n= s-t in this equality, where s\in Z_B is arbitrary, we obtain c_0 A_{s-t}B_{s-t}=0, that is, s-t\in Z_B. Hence (Z_B,+) is a group. This proves Lemma 6.4.

Lemma 6.5. Let R_j(A,B)\leqslant 2, j=0,1, and \operatorname{supp} A =\mathbb{Z}, B_0=0. Then the sequences A, B are uniquely defined by their terms A_n, B_m with -2\leqslant n\leqslant 2, -1\leqslant m\leqslant 2.

Proof. The element B_{-2} can be found from the formula
\begin{equation} D\begin{pmatrix} m & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} = \begin{vmatrix} A_{m+1}B_{m-1} & A_{m-1}B_{m+1} & A_m B_m \\ 0 & A_0 B_2 & A_1 B_1 \\ A_1 B_{-1} & A_{-1} B_1 & 0 \end{vmatrix}= 0, \end{equation} \tag{6.7}
in which we put m=-1. Note that B_{\pm 1}\neq 0 by Lemma 6.4. By symmetry, it suffices to show how A_n,B_n are evaluated for n>0. Suppose that we have evaluated all A_n,B_n for 1\leqslant n\leqslant m (m\geqslant 2). Then the element B_{m+1} is obtained from the equality
\begin{equation*} \widetilde D\begin{pmatrix} m-1 & 0 & -1 \\ -2 & -1 & 0 \end{pmatrix} = \begin{vmatrix} A_{m-2}B_{m+1} & A_{m-1}B_m & A_m B_{m-1} \\ A_{-1}B_2 & A_0 B_1 & 0 \\ A_{-2} B_1 & 0 & A_0 B_{-1} \end{vmatrix}= 0. \end{equation*} \notag
If B_{m-1}\,{\neq}\, 0, then the element A_{m+1} can be found from (6.7). If B_{m-1} = 0, then B_{m-2}\,{\neq}\, 0 (by Lemma 6.4) and the element A_{m+1} can be evaluated from the relation
\begin{equation*} \widetilde D\begin{pmatrix} m-1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} = \begin{vmatrix} A_{m+1}B_{m-2} & A_{m-1}B_m & A_m B_{m-1} \\ 0 & A_1 B_2 & A_2 B_1 \\ A_2 B_{-1} & A_0B_1 & 0 \end{vmatrix}= 0. \end{equation*} \notag
This proves Lemma 6.5.

Let \wp_L = -(\ln \sigma_L)'' be the Weierstrass \wp-function.

Lemma 6.6. Let c_{-1},c_0,c_1, k\in \mathbb{C}\setminus\{0\}, and c_0\neq c_{-1} or c_0\neq c_1. Then there exist a lattice L (possible degenerate) and points u\in \mathbb{C}\setminus L, v\in \mathbb{C}\setminus \frac{1}{2}L such that

\begin{equation} \wp_L (v)-\wp_L (u-v) = c_{-1}, \ \ \ \wp_L (v)-\wp_L (u) = c_0,\ \ \ \wp_L (v)-\wp_L (v+u) = c_1, \\ \ \wp' (v) = k. \end{equation} \tag{6.8}

Proof. For brevity, we put \wp_L = \wp. Let us show that the quantities (\xi_1,\nu_1)= (\wp(u),\wp'(u)), (\xi_2,\nu_2)= (\wp(v),\wp'(v)) and the parameters of the elliptic curve E, associated with the lattice L can be uniquely determined from (6.8).

It is clear that \nu_2 = k. Since c_{-1}-c_1 = \wp(u+v)-\wp(u-v), the formula

\begin{equation*} \wp(u+v)-\wp(u-v) = \frac{\wp'(u)\wp'(v)}{(\wp(u)-\wp(v))^2}= \frac{ \nu_1 k}{c_0^2} \end{equation*} \notag
(see [32]) implies that \nu_1 = (c_{-1}-c_1)c_0^2 k^{-1}. Using the addition formula for the \wp-function, we have
\begin{equation*} \wp(u+v) = c_2 -\wp(u)-\wp(v), \qquad c_2 = \frac{1}{4} \biggl(\frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)} \biggr)^2 = \frac{(\nu_1-k)^2}{4c_0^2}. \end{equation*} \notag
Substituting this relation into the third equation in (6.8), we find that 2\wp(v) +\wp (u) = c_1+c_2, that is, 2\xi_2 +\xi_1 = c_1+c_2. Considering the second equation in (6.8), we have
\begin{equation*} \xi_1 = \frac{c_1-2 c_0+c_2}{3}, \qquad \xi_2 = \frac{c_1+ c_0+c_2}{3}. \end{equation*} \notag
Let the elliptic curve E=E(g_2,g_3) be given by the equation y^2= 4x^3-g_2 x-g_3. Then the parameters g_2, g_3 form a unique solution of the system
\begin{equation*} \nu_1^2= 4 \xi_1^3-g_2 \xi_1 - g_3, \qquad \nu_2^2= 4 \xi_2^3-g_2 \xi_2 - g_3. \end{equation*} \notag

The converse result also holds: if

\begin{equation*} (\wp(u),\wp'(u))=(\xi_1,\nu_1), \qquad (\wp(v),\wp'(v))=(\xi_2,\nu_2), \qquad E=E(g_1,g_2), \end{equation*} \notag
where \xi_j, \nu_j, g_j are determined by the above formulas, then conditions (6.8) are met. It remains to choose points u, v. There exist (possible infinite) points u, v such that (\wp(u),\wp'(u))=(\xi_1,\nu_1), (\wp(v),\wp'(v))=(\xi_2,\nu_2). If the curve E is non-degenerate, then u,v\in \mathbb{C}. Let E be a degenerate curve. Since \wp'(v)=k\neq 0, we have v\in \mathbb{C}. If u is infinite, then from (6.8) we have c_{-1}=c_0=c_1.

Lemma 6.7. Let R_0(A,B)=R_1(A,B)=2 and let assertion iii) hold. Then (A,B)\sim (\widetilde A,\widetilde B), where (\widetilde A,\widetilde B) is of the form of 1), 2) or 3) in Theorem 3.1.

Proof. Consider the sequence c_n = A_{n-1}A_{n+1} A_n^{-2}.

1. Let \{c_n\} be non-constant. Then there is a number t such that c_t\neq c_{t+1}. Without loss of generality we can assume that t=0 and B_0 =0, B_{\pm 1} = \pm 1. By Lemma 6.6, there exist a lattice L and points u\in\mathbb{C}\setminus L, v\in \mathbb{C}\setminus \frac{1}{2} L, satisfying (6.8), where k= -B_2. Note that B_2\neq 0 by Lemma 6.4 and the condition \operatorname{supp}B \neq 2\mathbb{Z} +1. Consider the sequences

\begin{equation*} \Phi_n = \frac{A_0}{\sigma(u)} \biggl(\frac{\sigma(v)\sigma(u) A_1}{\sigma(u+v) A_0}\biggr)^n \frac{\sigma(nv+u)}{\sigma(v)^{n^2}} , \qquad \Psi_m = \frac{\sigma(mv)}{\sigma(v)^{m^2}}. \end{equation*} \notag
Here and below, \sigma = \sigma_L, \wp = \wp_L. We have \Phi_0= A_0, \Phi_1= A_1, \Psi_{\pm 1}= \pm 1, \Psi_0 = 0. From (1.3) we have
\begin{equation*} \sigma(2v+u) = \sigma((v+u)+v) = \frac{\sigma^2(v)\sigma^2(u+v)}{\sigma(u)} \bigl(\wp(v)-\wp(v+u)\bigr), \end{equation*} \notag
using which in view of (1.3) and (6.8) we have
\begin{equation*} \begin{aligned} \, \Phi_{-1} &= \frac{A_0^2}{A_1}\frac{\sigma(u+v)\sigma(u-v)} {\sigma(u)^2\sigma(v)^2} =\frac{A_0^2}{A_1} \bigl(\wp(v)-\wp(u)\bigr)= \frac{A_0^2}{A_1} c_{-1} = A_{-1}, \\ \Phi_2 &= \frac{A_1^2}{A_0}\frac{\sigma(u)\sigma(u+2v)} {\sigma(v)^2 \sigma(u+v)^2} = \frac{A_1^2}{A_0} \bigl(\wp(v)-\wp(u+v)\bigr)= \frac{A_1^2}{A_0} c_0 = A_2, \\ \Phi_{-2} &= \frac{A_0^3}{A_1^2}\frac{\sigma(u+v)^2\sigma(u-2v)} {\sigma(u)^3 \sigma(v)^6} =\frac{A_0^3}{A_1^2} \frac{\sigma(u+v)^2 \sigma(v)^2\sigma(u-v)^2} {\sigma(u)^4 \sigma(v)^6}\bigl(\wp(v)-\wp(u-v)\bigr) \\ &=\frac{A_0^3}{A_1^2} \bigl(\wp(v)-\wp(u)\bigr)^2\bigl(\wp(v)- \wp(u-v)\bigr)= \frac{A_0^3}{A_1^2} c_0^2 c_{-1} = A_{-2}. \end{aligned} \end{equation*} \notag
Furthermore, \Psi_2 = \sigma_L(2v)/\sigma_L(v)^4 = -\wp'(v) = B_2. Thus, A_n = \Phi_n, B_m = \Psi_m for -2\leqslant n\leqslant 2, -1\leqslant m \leqslant 2. From (1.3) it follows that R_j(\Phi,\Psi)\leqslant 2, j=0,1. Hence (\Phi,\Psi) = (A,B) by Lemma 6.5. We have arrived at case 1 of Theorem 3.1.

2. Let c_n=c for any n. The transformation of sequences of the type A_n \to A_n e(\alpha n^2 +\beta n) does not change the values c_{n+1}/c_n. Therefore, we assume that A_{-1}=A_0=A_1 (otherwise we consider an equivalent system with this property). We have A_{n-1}A_{n+1}A_n^{-2} \equiv 1 and A\equiv A_0. Since R_0(A,B)=2, B is a quasi-polynomial of rank 2 (see, for example, [21]). Hence assertion 2) or 3) of Theorem 3.1 is satisfied.

6.4. Fulfillment of assertions iv) or v)

Lemma 6.8. Let R_0(A,B)=R_1(A,B)=2 and let assertion iv) or v) hold. Then (A,B)\sim (\widetilde A, \widetilde B), where (\widetilde A, \widetilde B) is of type 4) or 5) in Theorem 3.1.

Proof. We set A'_n = A_{nd}, A''_n = A_{nd+t}, B'_n = B_{nd}, B''_n = B_{nd+t}. Let us show that
\begin{equation} R(A',B') = R(A'',B') = 2, \qquad R(A',B'') \leqslant 2. \end{equation} \tag{6.9}
We can consider only the case where d is even (the case of odd d is dealt with similarly). Hence B_n=0 for n\equiv d/2 \pmod d, and, therefore,
\begin{equation*} \begin{gathered} \, D\begin{pmatrix} n_0d & n_1d & d/2 \\ m_0d & m_1d & d/2 \end{pmatrix} = A_d B_0\cdot D_{A',B'} \begin{pmatrix} n_0 & n_1 \\ m_0 & m_0 \end{pmatrix} =0, \\ D\begin{pmatrix} n_0d + d/2 & n_1d+ d/2 & 0 \\ m_0d+d/2 & m_1d+ d/2 & 0 \end{pmatrix} = A_0 B_0\cdot \widetilde D_{A',B'} \begin{pmatrix} n_0 & n_1 \\ m_0 & m_0 \end{pmatrix} =0. \end{gathered} \end{equation*} \notag
As a result, R_0(A',B')=R_1(A',B')=1. So, R(A',B')=2. Applying the above arguments to the equivalent systems (\widetilde A,B), (A,\widetilde B), where \widetilde A_n = A_{n+t}, \widetilde B_n = B_{n+t}, we obtain the remaining relations in (6.9).

Using (6.9) and Lemma 4.2 we have A'_n= e(P_1(n)), A''_n= e(P_2(n)), B'_n= e(P_3(n)); B''_n= 0 for \operatorname{supp}B = d\mathbb{Z} and B''_n = e(P_4(n)), otherwise. Here P_j(n)=\alpha n^2+\beta_jn+\gamma_j. Therefore, the system (A,B) is equivalent to a system of type 4) (where d\geqslant 3) or type 5) in Theorem 3.1.

§ 7. Proofs of the main results

Lemma 7.1. Let R_0(A,B)=R_1(A,B)=2, and let \operatorname{supp}B be bounded from below or above. Then

a) \operatorname{supp} A has at most two elements of equal parity;

b) the estimates |\operatorname{supp} A|\leqslant 4, |{\operatorname{supp}B}|\leqslant 4 hold.

Proof. Suppose that the set \operatorname{supp}B is bounded from below, and the set \operatorname{supp} A has three terms of equal parity. Changing, if necessary, to an equivalent system, we can assume that 0 =\min \operatorname{supp}B, 0,2n,2m \in \operatorname{supp} A, 0<n<m. Hence B_{-n}=B_{-m}= B_{n-m}=0, and
\begin{equation*} D\begin{pmatrix} 0 & n & m \\ 0 & n & m \end{pmatrix} = \begin{vmatrix} A_0B_0 & 0 & 0\\ \ast & A_{2n}B_0 & 0 \\ \ast & \ast & A_{2m} B_0 \end{vmatrix}\neq 0, \end{equation*} \notag
a contradiction. Therefore, assertion a) holds. Accordingly, |{\operatorname{supp} A}|\leqslant 4. Applying assertion a) to the pair (B,A) we conclude that |{\operatorname{supp}B}|\leqslant 4, whence the claim.
Proof of Lemma 3.1. Changing, if necessary, to the equivalent system we can assume that condition 1) of Lemma 5.1 holds. If R_0(A,B) = 0 or R_1(A,B)=0, then by Lemma 5.3 in [3], the sets \operatorname{supp} A, \operatorname{supp}B are contained in an arithmetic progression with common difference 2. Therefore, R_j(A,B)\geqslant 1, j=0,1. It remains to apply Lemmas 4.5 and 7.1. This proves Lemma 3.1.
Proof of Theorem 3.1. Suppose that R(A,B)=4 and one of the sequences A or B has infinitely many non-zero elements. Then the sequences \operatorname{supp} A and \operatorname{supp}B are not bounded from below and above by Lemma 3.1. Without loss of generality we can assume that condition 1) of Lemma 5.1 holds. Then R_j(A,B)\geqslant 1, j=0,1, by Lemma 5.3 in [3]. Moreover, R_j(A,B)\neq 1 by Lemma 4.5, that is, R_j(A,B)=2. In view of Lemma 5.1, one of assertions i)–v) of the previous section holds up to an equivalence. An application of Lemmas 6.1, 6.3, 6.8, 6.7 gives that (A,B)\sim (\widetilde A, \widetilde B), where the system (\widetilde A, \widetilde B) has one of the types 1)–5) from Theorem 3.1. It remains to prove that R(\widetilde A, \widetilde B)=4 for each systems of type 1)–5).

If (A,B) is of type 1), then R_j(A,B)\leqslant 2. To check this, it is enough to use the definition of a hyperelliptic system and employ the addition formula (1.3). Since v\notin \frac{1}{2} L, we have R_j(A,B)\geqslant 2. This is verified in the same way as in the corresponding result in [3] (see the proof of Theorem 7.1 there).

If 2) or 3) is satisfied, then, obviously, R_j(A,B) = 2.

Let (A,B) be of type 4). If d\geqslant 3, then R(A,B)\geqslant 4 by Lemmas 4.14.3. If d=2, then R(A,B)\geqslant 4 by Lemma 2.3. We claim that R(A,B)\leqslant 4. By Lemma 2.1, there exists \alpha\in \mathbb{C} such that the series

\begin{equation} f(z)= \sum_{n\in \mathbb{Z}} A_n e(nz) e\biggl(\frac{n^2\alpha}2\biggr), \qquad g(z)= \sum_{m\in \mathbb{Z}} B_m e(mz) e\biggl(\frac{m^2\alpha}2\biggr) \end{equation} \tag{7.1}
converge absolutely and uniformly on each compact set. In view of Theorem 2.1 it remains to verify that R(f,g)\leqslant 4. It is clear that
\begin{equation} \begin{aligned} \, &\sum_{n\equiv t \,(\operatorname{mod} d)} e(nz)e(\beta n) e\biggl(\frac{\alpha n^2}2\biggr) \nonumber \\ &\qquad= e\biggl(tz+ \beta t + \frac{\alpha t^2}2\biggr) \sum_{k\in \mathbb{Z}} e\bigl(kd(z+\beta + \alpha t)\bigr) e\biggl(\frac{\alpha d^2 k^2}2\biggr) \nonumber \\ &\qquad= e\biggl(\beta t + \frac{\alpha t^2}2\biggr) e(tz) \theta \bigl(dz+ d(\beta +\alpha t); \tau\bigr), \qquad \tau = \alpha d^2. \end{aligned} \end{equation} \tag{7.2}
Therefore, f(z) = c_1\theta (dz;\tau) + c_0 e(tz) \theta (dz+z_0), g(z) = c_2\theta (dz;\tau) + c_0 e(tz) \theta (dz+z_0), where c_0 = e(\beta t + \alpha t^2), z_0 = d(\beta + \alpha t), \tau = \alpha d^2.

Using the addition formula \theta(x+y)\theta(x-y) = a_1(x)b_1(y)+a_2(x)b_2(y) (the explicit form of the functions a_1,a_2,b_1,b_2 is immaterial), one easily finds that R(f,g)\leqslant 4.

The case where (A,B) is of type 5) is considered similarly to the previous one.

Theorem 3.1 is proved.

Proof of Corollary 3.1. According to Theorem 2.1 and Lemma 2.1, the set of 1-periodic solutions of equations (1.2) coincides, up to an equivalence, with the set of systems (f,g) of type (7.1), where R(A,B)=4, and \alpha is an arbitrary complex constant for which the series (7.1) is convergent (see Lemma 3.2 in [3]). In addition, a 1-periodic function is a quasi-polynomial if and only if the sequence of Fourier coefficients of this function contains a finite number of non-zero terms. Therefore, by Theorem 3.1, the required set of solutions coincides, up to an equivalence, with the set of systems (f,g) of type (7.1), where the system (A,B) is one of types 1)–5) in Theorem 3.1.

1. Let the system (A,B) be of type 1).

1.1. Let the lattice L be non-degenerate. Then there are a,b,\tau,c_2,c_1,c_0\in \mathbb{C} such that \sigma_L(z) = \theta(az+b;\tau)e(c_1z^2 +c_2 z+c_3) (see [32], Ch. 21). Therefore, up to an equivalence A_n = \theta(nw+y_1;\tau), B_n = \theta(nw+y_2;\tau), and w\notin \frac{1}{2}\mathbb{Z} + \frac{\tau}{2}\mathbb{Z}. Hence

\begin{equation*} \begin{aligned} \, f(z)&= \sum_{n\in \mathbb{Z}}\theta(nw+y_1;\tau) e\biggl(\frac{n^2\alpha}2 + nz\biggr) =\sum_{k,n\in \mathbb{Z}} e\biggl(nk w+ y_1 k +\frac{k^2\tau}2 +\frac{n^2\alpha}2 + nz\biggr) \\ &= \Theta (z,y_1;\Omega), \qquad\text{where} \quad \Omega =\begin{pmatrix} \alpha & w \\ w & \tau \end{pmatrix}. \end{aligned} \end{equation*} \notag

Similarly g(z)= \Theta (z,y_2;\Omega). We get case (3.1).

1.2. If L=\{0\}, then \sigma_L(z)= z, A_n= nv+u_1, B_n=nv+u_2,

\begin{equation*} \begin{aligned} \, f(z) &= \sum_{n\in \mathbb{Z}} (nv+u_1) e\biggl(\frac{n^2\alpha}2 + nz\biggr) \\ &= \frac{v}{2\pi i}\,\frac{\partial}{\partial z}\sum_{n\in \mathbb{Z}} e\biggl(\frac{n^2\alpha}2 + nz\biggr)+ u_1 \sum_{n\in \mathbb{Z}} e\biggl(\frac{n^2\alpha}2 + nz\biggr) = c \theta'(z;\alpha)+ u_1 \theta(z;\alpha). \end{aligned} \end{equation*} \notag
A similar analysis gives g(z)= c \theta'(z;\alpha)+ u_2 \theta(z;\alpha). We thus have case (3.2).

1.3. If L= \{m \omega\colon m\in \mathbb{Z}\}, \omega\in \mathbb{C}\setminus\{0\}, then \sigma_L(z) = c_1 \sin(\pi \omega^{-1} z) \exp (c_2 z^2), where c_1=\omega \pi^{-1}, c_2 = \pi^2 \omega^{-2} 6^{-1}. Therefore, up to an equivalence,

\begin{equation*} \begin{gathered} \, A_n = 2i \sin \biggl(\frac{\pi(nv+u_1)}{\omega}\biggr) = c_1 e(\beta n) - c_1^{-1} e(-\beta n), \quad B_n = c_2 e(\beta n) - c_2^{-1} e(-\beta n), \\ c_j = e\biggl(\frac{u_j}{2\omega}\biggr), \qquad \beta = \frac{v}{2\omega}\notin \frac{1}{4}\mathbb{Z}, \\ f(z) = c_1 \theta(z+\beta;\alpha)- c_1^{-1} \theta(z-\beta;\alpha),\qquad g(z) = c_2 \theta(z+\beta;\alpha)- c_2^{-1} \theta(z-\beta;\alpha). \end{gathered} \end{equation*} \notag
In this case, (f,g) is equivalent to a system of type (3.3).

2. Let the system (\widetilde A,\widetilde B) be of type 2). Arguing as in case 1.2, we arrive at case (3.2), where c_1=0, c_2=c_4=1.

3. Let the system (\widetilde A,\widetilde B) be of type 3), 4) or 5). Using (7.2), we arrive at case (3.3), in which d=1 if 3) holds, and d\geqslant 2 in other cases. This proves Corollary 3.1.


Bibliography

1. M. Ward, “Memoir on elliptic divisibility sequences”, Amer. J. Math., 70 (1948), 31–74  crossref  mathscinet  zmath
2. M. O. Avdeeva and V. A. Bykovskii, “Hyperelliptic system of sequences and functions”, Dal'nevost. Mat. Zh., 16:2 (2016), 115–122 (Russian)  mathnet  mathscinet  zmath
3. A. A. Illarionov, “Hyperelliptic systems of sequences of rank 4”, Sb. Math., 210:9 (2019), 1259–1287  crossref  adsnasa
4. R. M. Robinson, “Periodicity of Somos sequences”, Proc. Amer. Math. Soc., 116:3 (1992), 613–619  crossref  mathscinet  zmath
5. R. Shipsey, Elliptic divisibility sequences, PhD thesis, Goldsmiths, Univ. London, London, 2000
6. C. S. Swart, Elliptic curves and related sequences, PhD thesis, Royal Holloway, Univ. London, London, 2003
7. A. N. W. Hone, “Elliptic curves and quadratic reccurence sequences”, Bull. London Math. Soc., 37:2 (2005), 161–171  crossref  mathscinet  zmath
8. A. J. van der Poorten and C. S. Swart, “Recurrence relations for elliptic sequences: every Somos 4 is a Somos k”, Bull. London Math. Soc., 38:4 (2006), 546–554  crossref  mathscinet  zmath
9. A. J. van der Poorten, “Hyperelliptic curves, continued fractions, and Somos sequences”, Dynamics and stochastics, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006, 212–224  crossref  mathscinet  zmath
10. A. N. W. Hone, “Sigma function solution of the initial value problem for Somos 5 sequences”, Trans. Amer. Math. Soc., 359:10 (2007), 5019–5034  crossref  mathscinet  zmath
11. A. N. W. Hone and C. Swart, “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Math. Proc. Cambridge Philos. Soc., 145:1 (2008), 65–85  crossref  mathscinet  zmath
12. A. N. W. Hone, “Analytic solutions and integrability for bilinear recurrences of order six”, Appl. Anal., 89:4 (2010), 473–492  crossref  mathscinet  zmath
13. Y. N. Fedorov and A. N. W. Hone, “Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties”, J. Integrable Syst., 1:1 (2016), xyw012  crossref  zmath
14. V. A. Bykovskii and A. V. Ustinov, “Somos-4 and elliptic systems of sequences”, Dokl. Math., 94:3 (2016), 611–614  crossref
15. R. Rochberg and L. A. Rubel, “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376  crossref  mathscinet  zmath
16. A. A. Illarionov, “Solution of functional equations related to elliptic functions”, Proc. Steklov Inst. Math., 299 (2017), 96–108  crossref
17. V. M. Buchstaber and D. V. Leikin, “Trilinear functional equations”, Russian Math. Surveys, 60:2 (2005), 341–343  crossref  adsnasa
18. V. M. Bukhshtaber and D. V. Leĭkin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120
19. V. M. Buchstaber and I. M. Krichever, “Integrable equations, addition theorems, and the Riemann–Schottky problem”, Russian Math. Surveys, 61:1 (2006), 19–78  crossref  adsnasa
20. V. A. Bykovskii, “Hyperquasipolynomials and their applications”, Funct. Anal. Appl., 50:3 (2016), 193–203  crossref
21. A. A. Illarionov and M. A. Romanov, “Hyperquasipolynomials for the theta-function”, Funct. Anal. Appl., 52:3 (2018), 228–231  crossref
22. A. A. Illarionov, “On a multilinear functional equation”, Math. Notes, 107:1 (2020), 80–92  crossref
23. M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:4 (1994), 591–610  crossref  mathscinet  zmath
24. P. Sinopoulos, “Generalized sine equation. I”, Aequationes Math., 48:2-3 (1994), 171–193  crossref  mathscinet  zmath
25. M. Bonk, “The characterization of theta functions by functional equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55  crossref  mathscinet  zmath
26. M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1-2 (1997), 54–72  crossref  mathscinet  zmath
27. A. Járai and W. Sander, “On the characterization of Weierstrass's sigma function”, Functional equations – results and advances, Adv. Math. (Dordr.), 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79  crossref  mathscinet  zmath
28. A. A. Illarionov, “Functional equations and Weierstrass sigma-functions”, Funct. Anal. Appl., 50:4 (2016), 281–290  crossref
29. A. A. Illarionov, “Solution of functional equations related to elliptic functions. II”, Sib. Èlektron. Mat. Izv., 16 (2019), 481–492 (Russian)  mathnet  crossref  mathscinet  zmath
30. T. Levi-Civita, “Sulle funzioni che ammettono una formula d'addizione del tipo f(x+y) \,{=} \sum_{i=1}^n X_i(x) Y_i(y)”, Atti Accad. Naz. Lincei. Rend. (5), 22:2 (1913), 181–183  zmath
31. A. O. Gelfond, Calculus of finite differences, Int. Monogr. Adv. Math. Phys., Hindustan Publishing Corp., Delhi, 1971  mathscinet  zmath
32. E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Part II, 4th ed., Cambridge Univ. Press, Cambridge, 1927, 233–578  crossref  mathscinet  zmath

Citation: A. A. Illarionov, “Calculation of hyperelliptic systems of sequences of rank 4”, Izv. Math., 87:6 (2023), 1185–1209
Citation in format AMSBIB
\Bibitem{Ill23}
\by A.~A.~Illarionov
\paper Calculation of hyperelliptic systems of sequences of rank 4
\jour Izv. Math.
\yr 2023
\vol 87
\issue 6
\pages 1185--1209
\mathnet{http://mi.mathnet.ru/eng/im9321}
\crossref{https://doi.org/10.4213/im9321e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4700019}
\zmath{https://zbmath.org/?q=an:07794515}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023IzMat..87.1185I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001146044700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180667564}
Linking options:
  • https://www.mathnet.ru/eng/im9321
  • https://doi.org/10.4213/im9321e
  • https://www.mathnet.ru/eng/im/v87/i6/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:471
    Russian version PDF:20
    English version PDF:60
    Russian version HTML:66
    English version HTML:256
    References:98
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025