Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 501–520
DOI: https://doi.org/10.1070/IM8773
(Mi im8773)
 

This article is cited in 13 scientific papers (total in 13 papers)

Division by 2 on odd-degree hyperelliptic curves and their Jacobians

Yu. G. Zarhin

Pennsylvania State University, Department of Mathematics, PA, USA
References:
Abstract: Let KK be an algebraically closed field of characteristic different from 22, gg a positive integer, f(x)f(x) a polynomial of degree 2g+12g+1 with coefficients in KK and without multiple roots, C:y2=f(x)C:y2=f(x) the corresponding hyperelliptic curve of genus gg over KK, and JJ its Jacobian. We identify CC with the image of its canonical embedding in JJ (the infinite point of CC goes to the identity element of JJ). It is well known that for every bJ(K) there are exactly 22g elements aJ(K) such that 2a=b. Stoll constructed an algorithm that provides the Mumford representations of all such a in terms of the Mumford representation of b. The aim of this paper is to give explicit formulae for the Mumford representations of all such a in terms of the coordinates a,b, where bJ(K) is given by a point P=(a,b)C(K)J(K). We also prove that if g>1, then C(K) does not contain torsion points of orders between 3 and 2g.
Keywords: hyperelliptic curves, Weierstrass points, Jacobians, torsion points.
Funding agency Grant number
Simons Foundation 585711
Partially supported by Simons Foundation Collaboration grant no. 585711. I started to write this paper during my stay at the Max-Planck-Institut für Mathematik (Bonn, Germany) in May–June 2016 and finished it during my next visit to the Institute in May–July 2018. The MPIM hospitality and support are gratefully acknowledged.
Received: 16.02.2018
Revised: 09.10.2018
Bibliographic databases:
Document Type: Article
UDC: 512.742+512.772
MSC: 14H40, 14G27, 11G10
Language: English
Original paper language: Russian
Citation: Yu. G. Zarhin, “Division by 2 on odd-degree hyperelliptic curves and their Jacobians”, Izv. Math., 83:3 (2019), 501–520
Citation in format AMSBIB
\Bibitem{Zar19}
\by Yu.~G.~Zarhin
\paper Division by 2 on odd-degree hyperelliptic curves and their Jacobians
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 501--520
\mathnet{http://mi.mathnet.ru/eng/im8773}
\crossref{https://doi.org/10.1070/IM8773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954306}
\zmath{https://zbmath.org/?q=an:1419.14044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..501Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800003}
\elib{https://elibrary.ru/item.asp?id=37652143}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070644965}
Linking options:
  • https://www.mathnet.ru/eng/im8773
  • https://doi.org/10.1070/IM8773
  • https://www.mathnet.ru/eng/im/v83/i3/p93
  • This publication is cited in the following 13 articles:
    1. John Boxall, “Bounds on the number of torsion points of given order on curves embedded in their jacobians”, Journal of Algebra, 2025  crossref
    2. Christophe Levrat, “Computing the cohomology of constructible étale sheaves on curves”, Journal de théorie des nombres de Bordeaux, 36:3 (2025), 1085  crossref
    3. G. V. Fedorov, “On Hyperelliptic Curves of Odd Degree and Genus g with Six Torsion Points of Order 2g + 1”, Dokl. Math., 2024  crossref
    4. G. V. Fedorov, “On hyperelliptic curves of odd degree and genus g with 6 torsion points of order 2g + 1”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 518:1 (2024), 10  crossref
    5. J. Boxall, “On the number of points of given order on odd-degree hyperelliptic curves”, Rocky Mountain J. Math., 53:2 (2023), 357–382  crossref  mathscinet
    6. E. Cotterill, N. Pflueger, N. Zhang, “Weierstrass semigroups from cyclic covers of hyperelliptic curves”, Bull. Braz. Math. Soc., New Series, 54:3 (2023), 37  crossref  mathscinet
    7. B. M. Bekker, Yu. G. Zarhin, “Torsion points of small order on hyperelliptic curves”, Eur. J. Math., 8:2 (2022), 611–624  crossref  mathscinet  isi  scopus
    8. J. Box, S. Gajovic, P. Goodman, “Cubic and quartic points on modular curves using generalised symmetric chabauty”, Int. Math. Res. Notices, 2022  crossref  mathscinet  isi
    9. Q. Gendron, “Pell–Abel equation and applications”, Comptes Rendus. Mathématique, 360:G9 (2022), 975–92  crossref  mathscinet
    10. N. Mani, S. Rubinstein-Salzedo, “Diophantine tuples over Zp”, Acta Arith., 197:4 (2021), 331–351  crossref  mathscinet  zmath  isi  scopus
    11. V. Arul, “Division by 1ζ on superelliptic curves and Jacobians”, Int. Math. Res. Notices, 2021:4 (2021), 3143–3185  crossref  mathscinet  zmath  isi
    12. B. M. Bekker, Yu. G. Zarhin, “Torsion points of order 2G+1 on odd degree hyperelliptic curves of genus G”, Trans. Am. Math. Soc., 373:11 (2020), 8059–8094  crossref  mathscinet  zmath  isi  scopus
    13. Yu. G. Zarhin, “Halves of points of an odd degree hyperelliptic curve in its Jacobian”, Integrable systems and algebraic geometry. A celebration of Emma Previato's 65th birthday. Volume 2, Lond. Math. Soc. Lect. Note Ser., 459, Cambridge Univ. Press, Cambridge, 2020, 102–118  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:442
    Russian version PDF:43
    English version PDF:44
    Russian version HTML:40
    References:51
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025