Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 521–533
DOI: https://doi.org/10.1070/IM8761
(Mi im8761)
 

Stably rational surfaces over a quasi-finite field

J.-L. Colliot-Thélène

CNRS, Université Paris-Sud Université Paris-Saclay, Département de Mathématiques d'Orsay, France
References:
Abstract: Let $k$ be a field and $X$ a smooth, projective, stably $k$-rational surface. If $X$ is split by a cyclic extension (for example, if the field $k$ is finite or, more generally, quasi-finite), then the surface $X$ is $k$-rational.
Keywords: rational surfaces, stable rationality, quasi-finite fields, cyclic splitting, Brauer group.
Received: 24.01.2018
Revised: 13.10.2018
Bibliographic databases:
Document Type: Article
UDC: 512.77
Language: English
Original paper language: French
Citation: J.-L. Colliot-Thélène, “Stably rational surfaces over a quasi-finite field”, Izv. Math., 83:3 (2019), 521–533
Citation in format AMSBIB
\Bibitem{Col19}
\by J.-L.~Colliot-Th\'el\`ene
\paper Stably rational surfaces over a quasi-finite field
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 521--533
\mathnet{http://mi.mathnet.ru//eng/im8761}
\crossref{https://doi.org/10.1070/IM8761}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954307}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..521C}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800004}
\elib{https://elibrary.ru/item.asp?id=37652144}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070740537}
Linking options:
  • https://www.mathnet.ru/eng/im8761
  • https://doi.org/10.1070/IM8761
  • https://www.mathnet.ru/eng/im/v83/i3/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:301
    Russian version PDF:35
    English version PDF:22
    References:40
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024