|
Stably rational surfaces over a quasi-finite field
J.-L. Colliot-Thélène CNRS, Université Paris-Sud Université Paris-Saclay,
Département de Mathématiques d'Orsay, France
Abstract:
Let $k$ be a field and $X$ a smooth, projective,
stably $k$-rational surface. If $X$ is split by a cyclic extension
(for example, if the field $k$ is finite or, more generally, quasi-finite),
then the surface $X$ is $k$-rational.
Keywords:
rational surfaces, stable rationality, quasi-finite fields, cyclic splitting, Brauer group.
Received: 24.01.2018 Revised: 13.10.2018
Citation:
J.-L. Colliot-Thélène, “Stably rational surfaces over a quasi-finite field”, Izv. Math., 83:3 (2019), 521–533
Linking options:
https://www.mathnet.ru/eng/im8761https://doi.org/10.1070/IM8761 https://www.mathnet.ru/eng/im/v83/i3/p113
|
Statistics & downloads: |
Abstract page: | 301 | Russian version PDF: | 35 | English version PDF: | 22 | References: | 40 | First page: | 28 |
|