Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 6, Pages 1225–1238
DOI: https://doi.org/10.1070/IM8511
(Mi im8511)
 

This article is cited in 10 scientific papers (total in 10 papers)

Boundedness of Toeplitz operators related to singular integral operators

Ya. Tan, L. Liu

Changsha University of Science and Technology
References:
Abstract: We establish that Toeplitz-type operators related to singular integral operators with variable Calderón–Zygmund kernels are bounded on weighted Morrey spaces. To do this, we prove weighted inequalities for the sharp maximal functions of such operators.
Keywords: Toeplitz-type operator, singular integral operator, sharp maximal function, Morrey space, weighted $\mathrm{BMO}$, weighted Lipschitz function.
Received: 24.01.2016
Revised: 15.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.518
MSC: 42B20, 42B25
Language: English
Original paper language: Russian
Citation: Ya. Tan, L. Liu, “Boundedness of Toeplitz operators related to singular integral operators”, Izv. Math., 82:6 (2018), 1225–1238
Citation in format AMSBIB
\Bibitem{TanLiu18}
\by Ya.~Tan, L.~Liu
\paper Boundedness of Toeplitz operators related to singular integral operators
\jour Izv. Math.
\yr 2018
\vol 82
\issue 6
\pages 1225--1238
\mathnet{http://mi.mathnet.ru/eng/im8511}
\crossref{https://doi.org/10.1070/IM8511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881769}
\zmath{https://zbmath.org/?q=an:1420.42013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82.1225T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454805800006}
\elib{https://elibrary.ru/item.asp?id=36448786}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060131795}
Linking options:
  • https://www.mathnet.ru/eng/im8511
  • https://doi.org/10.1070/IM8511
  • https://www.mathnet.ru/eng/im/v82/i6/p158
  • This publication is cited in the following 10 articles:
    1. Xiuyun Xia, Huatao Chen, Hao Tian, Ye Wang, Yadan Shi, “Sharp and Weighted Boundedness for Multilinear Integral Operators”, Tatra Mountains Mathematical Publications, 86:1 (2024), 185  crossref
    2. Q. Cao, G. Wang, “New findings on global exponential stability of inertial neural networks with both time-varying and distributed delays”, J. Exp. Theor. Artif. Intell., 34:3 (2022), 469–482  crossref  mathscinet  isi  scopus
    3. Cao Q., Wang G., “Dynamic Analysis on a Delayed Nonlinear Density-Dependent Mortality Nicholson'S Blowflies Model”, Int. J. Control, 94:9 (2021), 2596–2602  crossref  mathscinet  isi
    4. Yao L., “Global Exponential Stability on Anti-Periodic Solutions in Proportional Delayed Hihnns”, J. Exp. Theor. Artif. Intell., 33:1 (2021), 47–61  crossref  isi
    5. Qian Ch., “New Periodic Stability For a Class of Nicholson'S Blowflies Models With Multiple Different Delays”, Int. J. Control, 94:12 (2021), 3433–3438  crossref  mathscinet  isi
    6. Ya. Xu, Q. Cao, “Global asymptotic stability for a nonlinear density-dependent mortality nicholson's blowflies system involving multiple pairs of time-varying delays”, Adv. Differ. Equ., 2020:1 (2020), 123  crossref  mathscinet  isi
    7. J. Zhang, Ch. Huang, “Dynamics analysis on a class of delayed neural networks involving inertial terms”, Adv. Differ. Equ., 2020:1 (2020), 120  crossref  mathscinet  isi
    8. Ya. Xu, Q. Cao, X. Guo, “Stability on a patch structure nicholson's blowflies system involving distinctive delays”, Appl. Math. Lett., 105 (2020), 106340  crossref  mathscinet  zmath  isi  scopus
    9. H. Zhang, Q. Cao, H. Yang, “Asymptotically almost periodic dynamics on delayed nicholson-type system involving patch structure”, J. Inequal. Appl., 2020:1 (2020), 102  crossref  mathscinet  isi
    10. Ch. Huang, X. Long, J. Cao, “Stability of antiperiodic recurrent neural networks with multiproportional delays”, Math. Meth. Appl. Sci., 43:9 (2020), 6093–6102  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:328
    Russian version PDF:44
    English version PDF:15
    References:58
    First page:19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025