Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 6, Pages 1239–1264
DOI: https://doi.org/10.1070/IM8625
(Mi im8625)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Wirtinger derivations, the adjoint of the operator $\overline\partial$, and applications

Ch.-Ch. Tung

Minnesota State University, Mankato, MN, USA
References:
Abstract: We extend the Cauchy–Riemann (or Wirtinger) operators and the Laplacian on ${\mathbb C}^m$ to zero-degree currents on a (possibly singular) Riemann subdomain $D$ of a complex space (without recourse to resolution of singularities). The former extension gives rise to an adjoint operator $\overline\partial^*$ for the $\overline\partial$-operator on extendable test forms on $D$ (the components of $\overline\partial^*$ are the Wirtinger derivations). By means of the Wirtinger derivations, we generalize Gunning's theorem on the Cauchy–Riemann criterion (in the weak sense) for locally integrable functions to zero-degree currents on a complex space. To prove this result, we first give a generalization of Weyl's lemma to a Helmholtz operator. In the case of a continuous (resp. Lipschitzian) zero-degree current, we give a characterization of ‘weak holomorphy’ in terms of a local mean-value property (resp. an Euler operation). Wirtinger derivations also enable us to give explicit representations of the Green operator for the modified Laplacian ${\mathcal S}_{p,1,0}:= - \triangle_{p} + \mathrm{Id}$ (acting weakly on the Sobolev space $H^{-1}(D)$) and of Riesz's isomorphism between the Sobolev spaces $H^1_c(D)^*$ and $H^1_c(D)$.
Keywords: Wirtinger derivations, ${\overline \partial}_{\mathscr{W}}$-closed currents, ${\overline \partial}_{\mathscr{E}}$-closed currents, Schrödinger operator.
Received: 01.11.2016
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2018, Volume 82, Issue 6, Pages 172–199
DOI: https://doi.org/10.4213/im8625
Bibliographic databases:
Document Type: Article
UDC: 517.553
MSC: 32C30, 32W50
Language: English
Original paper language: Russian
Citation: Ch.-Ch. Tung, “On Wirtinger derivations, the adjoint of the operator $\overline\partial$, and applications”, Izv. RAN. Ser. Mat., 82:6 (2018), 172–199; Izv. Math., 82:6 (2018), 1239–1264
Citation in format AMSBIB
\Bibitem{Tun18}
\by Ch.-Ch.~Tung
\paper On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
\jour Izv. RAN. Ser. Mat.
\yr 2018
\vol 82
\issue 6
\pages 172--199
\mathnet{http://mi.mathnet.ru/im8625}
\crossref{https://doi.org/10.4213/im8625}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881770}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82.1239T}
\elib{https://elibrary.ru/item.asp?id=36448787}
\transl
\jour Izv. Math.
\yr 2018
\vol 82
\issue 6
\pages 1239--1264
\crossref{https://doi.org/10.1070/IM8625}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454805800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060175079}
Linking options:
  • https://www.mathnet.ru/eng/im8625
  • https://doi.org/10.1070/IM8625
  • https://www.mathnet.ru/eng/im/v82/i6/p172
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:324
    Russian version PDF:91
    English version PDF:22
    References:38
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024