Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 1, Pages 201–211
DOI: https://doi.org/10.1070/IM2014v078n01ABEH002685
(Mi im7989)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Goldbach problem with primes having binary expansions of a special form

K. M. Eminyanab

a N. E. Bauman Moscow State Technical University
b Financial University under the Government of the Russian Federation, Moscow
References:
Abstract: We obtain an asymptotic formula for the number of representations of an odd number $N$ by a sum of three primes in $\mathbb{N}_{0}$, where $\mathbb{N}_{0}$ stands for the set of positive integers whose binary expansions have evenly many 1's.
Keywords: ternary Goldbach problem, Gel'fond problem, large sieve, trigonometric sums.
Received: 10.04.2012
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 1, Pages 215–224
DOI: https://doi.org/10.4213/im7989
Bibliographic databases:
Document Type: Article
UDC: 511
MSC: Primary 11N37; Secondary 11P32
Language: English
Original paper language: Russian
Citation: K. M. Eminyan, “The Goldbach problem with primes having binary expansions of a special form”, Izv. RAN. Ser. Mat., 78:1 (2014), 215–224; Izv. Math., 78:1 (2014), 201–211
Citation in format AMSBIB
\Bibitem{Emi14}
\by K.~M.~Eminyan
\paper The Goldbach problem with primes having binary expansions of a~special form
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 1
\pages 215--224
\mathnet{http://mi.mathnet.ru/im7989}
\crossref{https://doi.org/10.4213/im7989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204664}
\zmath{https://zbmath.org/?q=an:1286.11157}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..201E}
\elib{https://elibrary.ru/item.asp?id=21276265}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 1
\pages 201--211
\crossref{https://doi.org/10.1070/IM2014v078n01ABEH002685}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332236500009}
\elib{https://elibrary.ru/item.asp?id=21866846}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894784036}
Linking options:
  • https://www.mathnet.ru/eng/im7989
  • https://doi.org/10.1070/IM2014v078n01ABEH002685
  • https://www.mathnet.ru/eng/im/v78/i1/p215
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:620
    Russian version PDF:184
    English version PDF:12
    References:88
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024