Abstract:
We obtain an asymptotic formula for the number of representations of an odd
number NN by a sum of three primes in N0, where
N0 stands for the set of positive integers whose binary
expansions have evenly many 1's.
Keywords:
ternary Goldbach problem, Gel'fond problem, large sieve, trigonometric sums.
\Bibitem{Emi14}
\by K.~M.~Eminyan
\paper The Goldbach problem with primes having binary expansions of a~special form
\jour Izv. Math.
\yr 2014
\vol 78
\issue 1
\pages 201--211
\mathnet{http://mi.mathnet.ru/eng/im7989}
\crossref{https://doi.org/10.1070/IM2014v078n01ABEH002685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204664}
\zmath{https://zbmath.org/?q=an:1286.11157}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..201E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332236500009}
\elib{https://elibrary.ru/item.asp?id=21276265}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894784036}
Linking options:
https://www.mathnet.ru/eng/im7989
https://doi.org/10.1070/IM2014v078n01ABEH002685
https://www.mathnet.ru/eng/im/v78/i1/p215
This publication is cited in the following 4 articles:
K. M. Eminyan, “Hua Loo-Keng's problem for primes of a special form”, Sb. Math., 212:4 (2021), 592–603
K. M. Eminyan, “A Nonlinear Additive Problem with Prime Numbers of a Special Form”, Math. Notes, 105:3 (2019), 458–463
K. M. Eminyan, “Obobschennaya problema delitelei s naturalnymi chislami, imeyuschimi dvoichnye razlozheniya spetsialnogo vida”, Chebyshevskii sb., 17:1 (2016), 270–283
K. M. Eminyan, “Asymptotic Law of Distribution of Primes of Special Form”, Math. Notes, 100:4 (2016), 625–628