Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 1, Pages 154–168
DOI: https://doi.org/10.1070/IM2014v078n01ABEH002683
(Mi im7988)
 

On the structure of Artin $L$-functions

S. A. Stepanov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
References:
Abstract: We consider the generating Artin $L$-function
$$ L(z)=L(z,f)=\exp\Bigl(\,\sum_{\nu=1}^{\infty}\frac{T_\nu}{\nu} z^\nu\Bigr) $$
for the character sums
$$ T_\nu=\sum_{x_1,\dots,x_n\in\mathbb F_{q^\nu}}\psi_\nu(f(x_1,\dots,x_n)), $$
where $\mathbb F_q$ is a finite field, $\mathbb F_{q^\nu}$ is a finite extension of $\mathbb F_q$, $\psi_\nu(\alpha)$ is a non-trivial additive character of $\mathbb F_{q^\nu}$, and $f\in\mathbb F_q[x_1,\dots,x_n]$ is a polynomial of degree $d\geqslant 2$, and give an elementary proof of Bombieri's conjecture on the algebraic structure of $L(z)$ in the case $n=2$.
Keywords: finite fields, sums of characters for polynomials in many variables, Artin $L$-function, Bombieri's conjecture, polarized symmetric polynomials in many variables, Waring's theorem on symmetric polynomials.
Received: 05.04.2012
Revised: 07.12.2012
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 1, Pages 167–180
DOI: https://doi.org/10.4213/im7988
Bibliographic databases:
Document Type: Article
UDC: 512.754
MSC: Primary 11T23; Secondary 11R42, 11M41, 11S40
Language: English
Original paper language: Russian
Citation: S. A. Stepanov, “On the structure of Artin $L$-functions”, Izv. RAN. Ser. Mat., 78:1 (2014), 167–180; Izv. Math., 78:1 (2014), 154–168
Citation in format AMSBIB
\Bibitem{Ste14}
\by S.~A.~Stepanov
\paper On the structure of Artin $L$-functions
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 1
\pages 167--180
\mathnet{http://mi.mathnet.ru/im7988}
\crossref{https://doi.org/10.4213/im7988}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204662}
\zmath{https://zbmath.org/?q=an:1300.11127}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..154S}
\elib{https://elibrary.ru/item.asp?id=21276263}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 1
\pages 154--168
\crossref{https://doi.org/10.1070/IM2014v078n01ABEH002683}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332236500007}
\elib{https://elibrary.ru/item.asp?id=21866771}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894700692}
Linking options:
  • https://www.mathnet.ru/eng/im7988
  • https://doi.org/10.1070/IM2014v078n01ABEH002683
  • https://www.mathnet.ru/eng/im/v78/i1/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:465
    Russian version PDF:151
    English version PDF:12
    References:68
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024