|
On the structure of Artin $L$-functions
S. A. Stepanov A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
Abstract:
We consider the generating Artin $L$-function
$$
L(z)=L(z,f)=\exp\Bigl(\,\sum_{\nu=1}^{\infty}\frac{T_\nu}{\nu} z^\nu\Bigr)
$$
for the character sums
$$
T_\nu=\sum_{x_1,\dots,x_n\in\mathbb F_{q^\nu}}\psi_\nu(f(x_1,\dots,x_n)),
$$
where $\mathbb F_q$ is a finite field, $\mathbb F_{q^\nu}$ is
a finite extension of $\mathbb F_q$, $\psi_\nu(\alpha)$ is
a non-trivial additive character of $\mathbb F_{q^\nu}$, and
$f\in\mathbb F_q[x_1,\dots,x_n]$ is a polynomial of degree $d\geqslant 2$, and give
an elementary proof of Bombieri's conjecture on the algebraic structure
of $L(z)$ in the case $n=2$.
Keywords:
finite fields, sums of characters for polynomials in many variables, Artin
$L$-function, Bombieri's conjecture, polarized symmetric polynomials in many
variables, Waring's theorem on symmetric polynomials.
Received: 05.04.2012 Revised: 07.12.2012
Citation:
S. A. Stepanov, “On the structure of Artin $L$-functions”, Izv. RAN. Ser. Mat., 78:1 (2014), 167–180; Izv. Math., 78:1 (2014), 154–168
Linking options:
https://www.mathnet.ru/eng/im7988https://doi.org/10.1070/IM2014v078n01ABEH002683 https://www.mathnet.ru/eng/im/v78/i1/p167
|
Statistics & downloads: |
Abstract page: | 465 | Russian version PDF: | 151 | English version PDF: | 12 | References: | 68 | First page: | 22 |
|