Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 2, Pages 287–346
DOI: https://doi.org/10.1070/IM2011v075n02ABEH002535
(Mi im4098)
 

This article is cited in 5 scientific papers (total in 5 papers)

Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights

G. M. Gubreeva, Yu. D. Latushkinb

a Poltava National Technical University named after Yuri Kondratyuk
b University of Missouri-Columbia
References:
Abstract: We consider unbounded continuously invertible operators $A$, $A_0$ on a Hilbert space $\mathfrak{H}$ such that the operator $A^{-1}-A^{-1}_0$ has finite rank. Assuming that $\sigma(A_0)=\varnothing$ and the semigroup $V_+(t):=\exp\{iA_0t\}$, $t\geqslant0$, is of class $C_0$, we state criteria under which the semigroups $U_\pm(t):=\exp\{\pm iAt\}$, $t\geqslant0$, are also of class $C_0$. We give applications to the theory of mean-periodic functions. The investigation is based on functional models of non-selfadjoint operators and on the technique of matrix Muckenhoupt weights.
Keywords: $C_0$-semigroups, functional models of non-selfadjoint operators, matrix Muckenhoupt weights, Hilbert spaces of entire functions.
Received: 16.03.2009
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.518
Language: English
Original paper language: Russian
Citation: G. M. Gubreev, Yu. D. Latushkin, “Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights”, Izv. Math., 75:2 (2011), 287–346
Citation in format AMSBIB
\Bibitem{GubLat11}
\by G.~M.~Gubreev, Yu.~D.~Latushkin
\paper Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights
\jour Izv. Math.
\yr 2011
\vol 75
\issue 2
\pages 287--346
\mathnet{http://mi.mathnet.ru/eng/im4098}
\crossref{https://doi.org/10.1070/IM2011v075n02ABEH002535}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830243}
\zmath{https://zbmath.org/?q=an:1220.47057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..287G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289889000004}
\elib{https://elibrary.ru/item.asp?id=20358785}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053471829}
Linking options:
  • https://www.mathnet.ru/eng/im4098
  • https://doi.org/10.1070/IM2011v075n02ABEH002535
  • https://www.mathnet.ru/eng/im/v75/i2/p69
  • This publication is cited in the following 5 articles:
    1. Gubreev G., Tarasenko A., “On the Theory of Unconditional Bases of Hilbert Spaces Formed By Entire Vector-Functions”, Bol. Soc. Mat. Mex., 24:1 (2018), 269–278  crossref  mathscinet  zmath  isi
    2. A. D. Baranov, D. V. Yakubovich, “One-dimensional perturbations of unbounded selfadjoint operators with empty spectrum”, J. Math. Anal. Appl., 424:2 (2015), 1404–1424  crossref  mathscinet  zmath  isi  scopus
    3. G. M. Gubreev, A. A. Tarasenko, “On the Similarity to Self-Adjoint Operators”, Funct. Anal. Appl., 48:4 (2014), 286–290  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Mariya Georgievna Volkova, Elena Ivanovna Olefir, “A criterion of unconditional basis property for the families of vector exponentials”, J Math Sci, 200:3 (2014), 389  crossref
    5. G. M. Gubreev, E. I. Olefir, A. A. Tarasenko, “Linear Combinations of the Volterra Dissipative Operator and Its Adjoint Operator”, Ukr Math J, 65:5 (2013), 780  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:742
    Russian version PDF:254
    English version PDF:30
    References:105
    First page:22
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025