Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 2, Pages 253–285
DOI: https://doi.org/10.1070/IM2011v075n02ABEH002534
(Mi im4067)
 

This article is cited in 9 scientific papers (total in 9 papers)

Sums of powers of subsets of an arbitrary finite field

A. A. Glibichuk

M. V. Lomonosov Moscow State University
References:
Abstract: We discuss the following problem: given an integer $n\geqslant 2$, a real number $\varepsilon\in (0,1)$, and an arbitrary subset $A\subseteq\mathbb{F}_q$ which is not contained in a multiplicative shift of a proper subfield of $\mathbb{F}_q$ and satisfies $|A|>q^{\frac{1}{n-\varepsilon}}$, where $\mathbb{F}_q$ is the finite field of $q=p^r$ elements, describe those positive integers $N$ and $m$ for which we have a set-theoretic equality $NA^m=\mathbb{F}_q$. In particular, we show that this equality holds for $m=2n-2$ and $N=N(n,r,\varepsilon)$.
Keywords: sum-products of sets, finite field.
Received: 18.12.2008
Revised: 31.10.2009
Bibliographic databases:
Document Type: Article
UDC: 511.235.1
MSC: 12E20, 11P05, 11B13
Language: English
Original paper language: Russian
Citation: A. A. Glibichuk, “Sums of powers of subsets of an arbitrary finite field”, Izv. Math., 75:2 (2011), 253–285
Citation in format AMSBIB
\Bibitem{Gli11}
\by A.~A.~Glibichuk
\paper Sums of powers of subsets of an arbitrary finite field
\jour Izv. Math.
\yr 2011
\vol 75
\issue 2
\pages 253--285
\mathnet{http://mi.mathnet.ru//eng/im4067}
\crossref{https://doi.org/10.1070/IM2011v075n02ABEH002534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830242}
\zmath{https://zbmath.org/?q=an:1262.11011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..253G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289889000003}
\elib{https://elibrary.ru/item.asp?id=20358784}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053473861}
Linking options:
  • https://www.mathnet.ru/eng/im4067
  • https://doi.org/10.1070/IM2011v075n02ABEH002534
  • https://www.mathnet.ru/eng/im/v75/i2/p35
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:757
    Russian version PDF:256
    English version PDF:30
    References:69
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024