Abstract:
We consider the asymptotic behavior of the real spectrum of the indefinite Sturm-Liouville problem for large values of the spectral parameter and prove the existence of infinitely many
asymptotic terms under the condition that the coefficients of the equation are analytic.
Citation:
S. N. Tumanov, “Asymptotic formulae for the real eigenvalues of the Sturm–Liouville problem with two turning points”, Izv. Math., 65:5 (2001), 1003–1016
\Bibitem{Tum01}
\by S.~N.~Tumanov
\paper Asymptotic formulae for the real eigenvalues of the Sturm--Liouville problem with two turning points
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 1003--1016
\mathnet{http://mi.mathnet.ru/eng/im360}
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874357}
\zmath{https://zbmath.org/?q=an:1036.34096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4344698805}
Linking options:
https://www.mathnet.ru/eng/im360
https://doi.org/10.1070/IM2001v065n05ABEH000360
https://www.mathnet.ru/eng/im/v65/i5/p153
This publication is cited in the following 2 articles:
Multiparameter Eigenvalue Problems, 2010, 210
Zhang Xu, Zuazua E., “Polynomial decay and control of a 1−d hyperbolic-parabolic coupled system”, J. Differential Equations, 204:2 (2004), 380–438