|
This article is cited in 22 scientific papers (total in 22 papers)
Dual representation of superlinear functionals and its applications in function theory. II
B. N. Khabibullin Bashkir State University
Abstract:
The results of the first part of this work (see [1]) are used only in § 7 of this paper, from which subsequent results follow. We pose new dual problems for weight spaces of holomorphic functions of one and several variables defined on a domain in $\mathbb C^n$, namely, the problem of non-triviality of a given space, description of zero sets, description of sets of
(non-)uniqueness, existence of holomorphic functions of certain classes that “suppress” the growth of a given holomorphic function, and representation of meromorphic functions as quotients of holomorphic functions contained in a given space.
Received: 25.06.1997
Citation:
B. N. Khabibullin, “Dual representation of superlinear functionals and its applications in function theory. II”, Izv. RAN. Ser. Mat., 65:5 (2001), 167–190; Izv. Math., 65:5 (2001), 1017–1039
Linking options:
https://www.mathnet.ru/eng/im361https://doi.org/10.1070/IM2001v065n05ABEH000361 https://www.mathnet.ru/eng/im/v65/i5/p167
|
Statistics & downloads: |
Abstract page: | 549 | Russian version PDF: | 230 | English version PDF: | 33 | References: | 75 | First page: | 2 |
|