Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 5, Pages 1017–1039
DOI: https://doi.org/10.1070/IM2001v065n05ABEH000361
(Mi im361)
 

This article is cited in 22 scientific papers (total in 22 papers)

Dual representation of superlinear functionals and its applications in function theory. II

B. N. Khabibullin

Bashkir State University
References:
Abstract: The results of the first part of this work (see [1]) are used only in § 7 of this paper, from which subsequent results follow. We pose new dual problems for weight spaces of holomorphic functions of one and several variables defined on a domain in $\mathbb C^n$, namely, the problem of non-triviality of a given space, description of zero sets, description of sets of (non-)uniqueness, existence of holomorphic functions of certain classes that “suppress” the growth of a given holomorphic function, and representation of meromorphic functions as quotients of holomorphic functions contained in a given space.
Received: 25.06.1997
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2001, Volume 65, Issue 5, Pages 167–190
DOI: https://doi.org/10.4213/im361
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: B. N. Khabibullin, “Dual representation of superlinear functionals and its applications in function theory. II”, Izv. RAN. Ser. Mat., 65:5 (2001), 167–190; Izv. Math., 65:5 (2001), 1017–1039
Citation in format AMSBIB
\Bibitem{Kha01}
\by B.~N.~Khabibullin
\paper Dual representation of superlinear functionals and its applications in function theory.~II
\jour Izv. RAN. Ser. Mat.
\yr 2001
\vol 65
\issue 5
\pages 167--190
\mathnet{http://mi.mathnet.ru/im361}
\crossref{https://doi.org/10.4213/im361}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874358}
\zmath{https://zbmath.org/?q=an:1052.32004}
\transl
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 1017--1039
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000361}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747030301}
Linking options:
  • https://www.mathnet.ru/eng/im361
  • https://doi.org/10.1070/IM2001v065n05ABEH000361
  • https://www.mathnet.ru/eng/im/v65/i5/p167
    Cycle of papers
    This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:549
    Russian version PDF:230
    English version PDF:33
    References:75
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024