Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 5, Pages 977–1001
DOI: https://doi.org/10.1070/IM2001v065n05ABEH000359
(Mi im359)
 

This article is cited in 10 scientific papers (total in 10 papers)

Finite-dimensional dynamics on attractors of non-linear parabolic equations

A. V. Romanov

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
References:
Abstract: We show that one-dimensional semilinear second-order parabolic equations have finite-dimensional dynamics on attractors. In particular, this is true for reaction-diffusion equations with convection on $(0,1)$.
We obtain new topological criteria for a class of dissipative equations of parabolic type in Banach spaces to have finite-dimensional dynamics on invariant compact sets. The dynamics of these equations on an attractor $\mathcal A$ is finite-dimensional (can be described by an ordinary differential equation) if $\mathcal A$ can be embedded in a finite-dimensional $C^1$-submanifold of the phase space.
Received: 20.07.2000
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2001, Volume 65, Issue 5, Pages 129–152
DOI: https://doi.org/10.4213/im359
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. RAN. Ser. Mat., 65:5 (2001), 129–152; Izv. Math., 65:5 (2001), 977–1001
Citation in format AMSBIB
\Bibitem{Rom01}
\by A.~V.~Romanov
\paper Finite-dimensional dynamics on attractors of non-linear parabolic equations
\jour Izv. RAN. Ser. Mat.
\yr 2001
\vol 65
\issue 5
\pages 129--152
\mathnet{http://mi.mathnet.ru/im359}
\crossref{https://doi.org/10.4213/im359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874356}
\zmath{https://zbmath.org/?q=an:1026.37064}
\transl
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 977--1001
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000359}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747018155}
Linking options:
  • https://www.mathnet.ru/eng/im359
  • https://doi.org/10.1070/IM2001v065n05ABEH000359
  • https://www.mathnet.ru/eng/im/v65/i5/p129
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:584
    Russian version PDF:329
    English version PDF:16
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024