Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 28, Issue 3, Pages 445–465
DOI: https://doi.org/10.1070/IM1987v028n03ABEH000892
(Mi im1497)
 

This article is cited in 7 scientific papers (total in 7 papers)

Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion

P. G. Grinevich
References:
Abstract: The problem of describing a commuting pair of differential operators in terms of its Burchnall–Chaundy curve and the holomorphic bundle over it is considered. A characteristic of the matrix case is the occurrence of vector rank, a bundle having various dimensions over various components of the Burchnall–Chaundy curve. A complete, independent system which determines the pair of operators uniquely is chosen. In the last section, a proof is given of S. P. Novikov's criterion for an operator with periodic coefficients to be an operator of a nontrivial commuting pair.
Bibliography: 25 titles.
Received: 21.02.1984
Bibliographic databases:
UDC: 517.43
MSC: 47E05, 34B25
Language: English
Original paper language: Russian
Citation: P. G. Grinevich, “Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion”, Math. USSR-Izv., 28:3 (1987), 445–465
Citation in format AMSBIB
\Bibitem{Gri86}
\by P.~G.~Grinevich
\paper Vector rank of commuting matrix differential operators. Proof of S.\,P.~Novikov's criterion
\jour Math. USSR-Izv.
\yr 1987
\vol 28
\issue 3
\pages 445--465
\mathnet{http://mi.mathnet.ru//eng/im1497}
\crossref{https://doi.org/10.1070/IM1987v028n03ABEH000892}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=854592}
\zmath{https://zbmath.org/?q=an:0623.47049|0609.47061}
Linking options:
  • https://www.mathnet.ru/eng/im1497
  • https://doi.org/10.1070/IM1987v028n03ABEH000892
  • https://www.mathnet.ru/eng/im/v50/i3/p458
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:580
    Russian version PDF:153
    English version PDF:20
    References:86
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024