Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 28, Issue 3, Pages 421–444
DOI: https://doi.org/10.1070/IM1987v028n03ABEH000891
(Mi im1496)
 

This article is cited in 33 scientific papers (total in 33 papers)

A theorem on splitting an operator, and some related questions in the analytic theory of perturbations

A. G. Baskakov
References:
Abstract: The basis for most of the results in this paper is a theorem that a perturbed operator with disjoint parts of the spectrum is similar to an operator for which the subspaces constructed from the isolated parts of the unperturbed operator are invariant. In particular, estimates are obtained for the eigenvalues and projections of the perturbed operators, results about equiconvergence of spectral decompositions are obtained, and convergence questions for the eigenvalues are investigated with the use of projection methods.
Bibliography: 15 titles.
Received: 02.04.1981
Revised: 23.02.1983
Bibliographic databases:
UDC: 517.983.28+519.614
MSC: Primary 47A10, 47A55; Secondary 47B40
Language: English
Original paper language: Russian
Citation: A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444
Citation in format AMSBIB
\Bibitem{Bas86}
\by A.~G.~Baskakov
\paper A~theorem on splitting an operator, and some related questions in the analytic theory of perturbations
\jour Math. USSR-Izv.
\yr 1987
\vol 28
\issue 3
\pages 421--444
\mathnet{http://mi.mathnet.ru/eng/im1496}
\crossref{https://doi.org/10.1070/IM1987v028n03ABEH000891}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=854591}
\zmath{https://zbmath.org/?q=an:0636.47019}
Linking options:
  • https://www.mathnet.ru/eng/im1496
  • https://doi.org/10.1070/IM1987v028n03ABEH000891
  • https://www.mathnet.ru/eng/im/v50/i3/p435
  • This publication is cited in the following 33 articles:
    1. Dmitry M. Polyakov, “Spectral analysis of an even order differential operator with square integrable potential”, Math Methods in App Sciences, 46:5 (2023), 5483  crossref
    2. A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “O sglazhivanii operatornogo koeffitsienta differentsialnogo operatora pervogo poryadka v banakhovom prostranstve”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii  i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 206, VINITI RAN, M., 2022, 3–14  mathnet  crossref
    3. A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “On the spectral analysis of a differential operator with an involution and general boundary conditions”, Eurasian Math. J., 11:2 (2020), 30–39  mathnet  crossref
    4. N. B. Uskova, “Matrichnyi analiz spektralnykh proektorov vozmuschennykh samosopryazhennykh operatorov”, Sib. elektron. matem. izv., 16 (2019), 369–405  mathnet  crossref  mathscinet
    5. Baskakov A.G. Krishtal I.A. Uskova N.B., “Similarity Techniques in the Spectral Analysis of Perturbed Operator Matrices”, J. Math. Anal. Appl., 477:2 (2019), 930–960  crossref  isi
    6. I. A. Krishtal, N. B. Uskova, “Spektralnye svoistva differentsialnykh operatorov pervogo poryadka s involyutsiei i gruppy operatorov”, Sib. elektron. matem. izv., 16 (2019), 1091–1132  mathnet  crossref
    7. A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “Metod podobnykh operatorov v issledovanii spektralnykh svoistv vozmuschennykh differentsialnykh operatorov pervogo poryadka”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 3–18  mathnet  crossref
    8. D. M. Polyakov, “A one-dimensional Schrödinger operator with square-integrable potential”, Siberian Math. J., 59:3 (2018), 470–485  mathnet  crossref  crossref  isi  elib
    9. A. G. Baskakov, N. B. Uskova, “Fourier method for first order differential equations with involution and groups of operators”, Ufa Math. J., 10:3 (2018), 11–34  mathnet  crossref  isi
    10. Baskakov A.G. Krishtal I.A. Uskova N.B., “Linear Differential Operator With An Involution as a Generator of An Operator Group”, Oper. Matrices, 12:3 (2018), 723–756  crossref  mathscinet  zmath  isi
    11. A. N. Shelkovoi, “Spektralnye svoistva differentsialnogo operatora vtorogo poryadka, opredelyaemogo nelokalnymi kraevymi usloviyami”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:4 (2018), 18–33  mathnet  crossref
    12. Serge Kozlukov, “The method of similar operators in the study of the spectra of the adjacency matrices of graphs”, J. Phys.: Conf. Ser., 973 (2018), 012036  crossref
    13. I. N. Braeutigam, D. M. Polyakov, “On the Asymptotics of Eigenvalues of a Fourth-Order Differential Operator with Matrix Coefficients”, Diff Equat, 54:4 (2018), 450  crossref
    14. N. B. Uskova, G. V. Garkavenko, “The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential”, J. Math. Sci., 246:6 (2020), 812–827  mathnet  crossref  crossref
    15. A. G. Baskakov, D. M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. A. G. Baskakov, T. K. Katsaran, T. I. Smagina, “Linear differential second-order equations in Banach space and splitting of operators”, Russian Math. (Iz. VUZ), 61:10 (2017), 32–43  mathnet  crossref  isi
    17. Baskakov A.G. Krishtal I.A. Romanova E.Yu., “Spectral Analysis of a Differential Operator With An Involution”, J. Evol. Equ., 17:2 (2017), 669–684  crossref  isi
    18. Garkavenko G.V., Uskova N.B., “Method of Similar Operators in Research of Spectral Properties of Difference Operators With Growthing Potential”, Sib. Electron. Math. Rep., 14 (2017), 673–689  mathnet  crossref  isi
    19. G. V. Garkavenko, N. B. Uskova, “Asimptotika sobstvennykh znachenii raznostnogo operatora s rastuschim potentsialom i polugruppy operatorov”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:4 (2017), 6–17  mathnet  crossref
    20. A. G. Baskakov, D. M. Polyakov, “Spectral Properties of the Hill Operator”, Math. Notes, 99:4 (2016), 598–602  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:821
    Russian version PDF:334
    English version PDF:41
    References:99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025