Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 32, Issue 1, Pages 141–165
DOI: https://doi.org/10.1070/IM1989v032n01ABEH000746
(Mi im1172)
 

Quasiclassical asymptotics of the scattering cross-section for the Schrödinger equation

D. R. Yafaev
References:
Abstract: The author considers scattering with a potential $gq(x)$, $x\in\mathbf R^m$, that decreases as $|x|\to\infty$ as a homogeneous function of degree $-\alpha$. In the domain $gk^{-1}\to\infty$, $gk^{\alpha-2}\to\infty$ the asymptotics of the forward scattering amplitude is found, as well as the total scattering cross-section averaged over a small interval of $k$. This is determined only by the behavior of $q(x)$ as $|x|\to\infty$. Dual results are obtained for strongly singular potentials.
Bibliography: 16 titles.
Received: 19.03.1986
Bibliographic databases:
UDC: 539.101
MSC: Primary 35J10, 35P25; Secondary 81F15
Language: English
Original paper language: Russian
Citation: D. R. Yafaev, “Quasiclassical asymptotics of the scattering cross-section for the Schrödinger equation”, Math. USSR-Izv., 32:1 (1989), 141–165
Citation in format AMSBIB
\Bibitem{Yaf88}
\by D.~R.~Yafaev
\paper Quasiclassical asymptotics of the scattering cross-section for the Schr\"odinger equation
\jour Math. USSR-Izv.
\yr 1989
\vol 32
\issue 1
\pages 141--165
\mathnet{http://mi.mathnet.ru//eng/im1172}
\crossref{https://doi.org/10.1070/IM1989v032n01ABEH000746}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=936527}
\zmath{https://zbmath.org/?q=an:0672.35054}
Linking options:
  • https://www.mathnet.ru/eng/im1172
  • https://doi.org/10.1070/IM1989v032n01ABEH000746
  • https://www.mathnet.ru/eng/im/v52/i1/p139
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024