Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 32, Issue 1, Pages 113–139
DOI: https://doi.org/10.1070/IM1989v032n01ABEH000740
(Mi im1171)
 

This article is cited in 1 scientific paper (total in 1 paper)

Expansion in eigenfunctions of a nonselfadjoint operator with purely continuous spectrum

S. E. Cheremshantsev
References:
Abstract: The differential operator
$$ H=-\Delta_{\boldsymbol x}+i\varkappa\Delta_{\boldsymbol y}+q(\boldsymbol x-\boldsymbol y), $$
arising in the three-dimensional problem of scattering by a Brownian particle is studied. Its analysis reduces to the investigation of a family of operators in $L_2(\mathbf R^3)$:
$$ B_{\boldsymbol p}=-\Delta_{\boldsymbol v}+2(\boldsymbol p,\Delta_{\boldsymbol v})+\frac{q(\boldsymbol v)}{1-i\varkappa}, \quad \boldsymbol p\in \mathbf R^3. $$
Under the condition that the potential $q$ is bounded and small, an expansion in the eigenfunctions of the continuous spectrum of $B_\boldsymbol p$ is obtained. From this expansion an explicit formula is found for the semigroup $\exp(itH)$ on a set dense in $L_2(\mathbf R^6)$.
Bibliography: 5 titles.
Received: 23.12.1985
Bibliographic databases:
UDC: 517.4
MSC: Primary 35J10, 35P10; Secondary 35R60, 47D05
Language: English
Original paper language: Russian
Citation: S. E. Cheremshantsev, “Expansion in eigenfunctions of a nonselfadjoint operator with purely continuous spectrum”, Math. USSR-Izv., 32:1 (1989), 113–139
Citation in format AMSBIB
\Bibitem{Che88}
\by S.~E.~Cheremshantsev
\paper Expansion in eigenfunctions of a~nonselfadjoint operator with purely continuous spectrum
\jour Math. USSR-Izv.
\yr 1989
\vol 32
\issue 1
\pages 113--139
\mathnet{http://mi.mathnet.ru//eng/im1171}
\crossref{https://doi.org/10.1070/IM1989v032n01ABEH000740}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=936526}
\zmath{https://zbmath.org/?q=an:0679.35071}
Linking options:
  • https://www.mathnet.ru/eng/im1171
  • https://doi.org/10.1070/IM1989v032n01ABEH000740
  • https://www.mathnet.ru/eng/im/v52/i1/p113
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024