Loading [MathJax]/jax/output/SVG/config.js
Artificial Intelligence and Decision Making
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Artificial Intelligence and Decision Making:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Artificial Intelligence and Decision Making, 2010, Issue 4, Pages 14–40 (Mi iipr513)  

This article is cited in 23 scientific papers (total in 23 papers)

Data mining

The inductive J.S. Mill’s methods in artificial intelligence systems. Part II

V. K. Finn

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences, Moscow
Abstract: The deductibility of hypotheses from Facts Bases using for discovery of different kinds of JSM-reasoning correctness is defined in the paper. The correspondence between JSM-reasoning total correctness and the tolerance spaces is established. The inductive method of residues and inductive method of concomitant variations are formalized and corresponding JSM-method strategies are defined in the paper. Dynamic regularities in Facts Bases are operationally defined by plausible inference rules for the method of concomitant variations. The features of JSM-method of automatic hypotheses generation in Intelligent Systems considered as the tool of knowledge discovery are discussed also.
Keywords: JSM-method, inductive method of residues, inductive method of concomitant variations, tolerance spaces, abductive convergence, static and dynamic regularities in Facts Bases.
English version:
Scientific and Technical Information Processing, 2012, Volume 39, Issue 5, Pages 241–260
DOI: https://doi.org/10.3103/S0147688212050036
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. K. Finn, “The inductive J.S. Mill’s methods in artificial intelligence systems. Part II”, Artificial Intelligence and Decision Making, 2010, no. 4, 14–40; Scientific and Technical Information Processing, 39:5 (2012), 241–260
Citation in format AMSBIB
\Bibitem{Fin10}
\by V.~K.~Finn
\paper The inductive J.S. Mill’s methods in artificial intelligence systems. Part~II
\jour Artificial Intelligence and Decision Making
\yr 2010
\issue 4
\pages 14--40
\mathnet{http://mi.mathnet.ru/iipr513}
\elib{https://elibrary.ru/item.asp?id=17331421}
\transl
\jour Scientific and Technical Information Processing
\yr 2012
\vol 39
\issue 5
\pages 241--260
\crossref{https://doi.org/10.3103/S0147688212050036}
Linking options:
  • https://www.mathnet.ru/eng/iipr513
  • https://www.mathnet.ru/eng/iipr/y2010/i4/p14
    Cycle of papers
    This publication is cited in the following 23 articles:
    1. M. I. Zabezhailo, “Intelligent Data Analysis As an Evidence-Based Medicine Tool”, Autom. Doc. Math. Linguist., 58:2 (2024), 129  crossref
    2. M. I. Zabezhailo, M. A. Mikheyenkova, Yu. Yu. Trunin, “On the Nonbinary Version of the Causality Relation in the Intelligent Analysis of Oncological Data”, Autom. Doc. Math. Linguist., 58:3 (2024), 200  crossref
    3. M. I. Zabezhailo, “On the Problem of Explaining the Results of Intelligent Data Analysis”, Pattern Recognit. Image Anal., 34:3 (2024), 498  crossref
    4. N. A. Simonov, “Development of an Apparatus of Imaginative Information Representation for Neuromorphic Devices”, Russ Microelectron, 53:5 (2024), 423  crossref
    5. M. I. Zabezhailo, A. V. Amentes, “Some Features of Intelligent Analysis of Empirical Data Collections Updated with New Information, but Limited in Size”, Autom. Doc. Math. Linguist., 57:3 (2023), 172  crossref
    6. A. Grusho, N. Grusho, M. Zabezhailo, E. Timonina, Lecture Notes in Networks and Systems, 777, Proceedings of the Seventh International Scientific Conference “Intelligent Information Technologies for Industry” (IITI'23), 2023, 100  crossref
    7. S. M. Gusakova, “The Structure of Relations in a Set of JSM Strategies”, Autom. Doc. Math. Linguist., 56:3 (2022), 111  crossref
    8. V. K. Finn, “JSM Reasoning and Knowledge Discovery: Ampliative Reasoning, Causality Recognition, and Three Kinds of Completeness#”, Autom. Doc. Math. Linguist., 56:2 (2022), 79  crossref
    9. D. V. Vinogradov, “Algebraic machine learning: emphasis on efficiency”, Autom. Remote Control, 83:6 (2022), 831–846  mathnet  mathnet  crossref  crossref
    10. Alexander Grusho, Nikolai Grusho, Michael Zabezhailo, Elena Timonina, Communications in Computer and Information Science, 1552, Distributed Computer and Communication Networks, 2022, 420  crossref
    11. M. I. Zabezhailo, “On the Problem of AI-Tools Application in Digital Control Systems”, Autom. Doc. Math. Linguist., 56:5 (2022), 229  crossref
    12. Sanjeev Kumar Punia, Manoj Kumar, Amit Sharma, Advances in Intelligent Systems and Computing, 1172, Intelligent Computing and Applications, 2021, 793  crossref
    13. D. V. Vinogradov, “Lattice theory for machine learning”, 49, no. 5, 2022, 379–384  mathnet  mathnet  crossref  crossref
    14. M. I. Zabezhailo, Yu. Yu. Trunin, “On the Importance of Empirical Contradiction for Reliability Estimation of Intelligent Data Analysis Results”, Autom. Doc. Math. Linguist., 55:3 (2021), 94  crossref
    15. V. K. Finn, “Exact Epistemology and Artificial Intelligence”, Autom. Doc. Math. Linguist., 54:3 (2020), 140  crossref
    16. V.K. Finn, V.K. Finn, “Tochnaya epistemologiya i iskusstvennyi intellekt”, Nauchno-tekhnicheskaya informatsiya. Seriya 2: Informatsionnye protsessy i sistemy, 2020, no. 6, 1  crossref
    17. M. I. Zabezhailo, Yu. Yu. Trunin, “To the reliability of medical diagnosis based on empirical data”, 48, no. 5, 2021, 415–422  mathnet  mathnet  crossref  crossref
    18. S. M. Gusakova, A. N. Okhlupina, “Intelligent DSM Systems as an Automated Support Tool for Scientific Research on Handwriting”, Autom. Doc. Math. Linguist., 53:3 (2019), 114  crossref
    19. M. I. Zabezhailo, Yu. Yu. Trunin, “On the Problem of Medical Diagnostic Evidence: Intelligent Analysis of Empirical Data on Patients in Samples of Limited Size”, Autom. Doc. Math. Linguist., 53:6 (2019), 322  crossref
    20. V. K. Finn, O. P. Shesternikova, “The Heuristics of Detection of Empirical Regularities by JSM Reasoning”, Autom. Doc. Math. Linguist., 52:5 (2018), 215  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Artificial Intelligence and Decision Making
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :21
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025