Artificial Intelligence and Decision Making
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Artificial Intelligence and Decision Making:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Artificial Intelligence and Decision Making, 2010, Issue 3, Pages 3–21 (Mi iipr502)  

This article is cited in 28 scientific papers (total in 28 papers)

Data mining

J.S. Mill’s inductive methods in artificial intelligence systems. Part I

V. K. Finn

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences, Moscow
Abstract: The principles of J.S. Mill’s induction are formulated. These principles are developed and formalized for the five J.S. Mill’s inductive methods (the method of agreement, the method of difference, the joint method of agreement and difference, the method of residues, and the method of concomitant variations). The method of agreement, the method of difference, and the joint method of agreement and difference are considered in the Part I. The possible strategies of plausible reasoning realizing interaction of Mill’s induction, analogy and abduction are formulated. These strategies are considered to be cognitive reasoning (the justification is provided).
Keywords: JSM-method, induction, analogy, abduction, method of agreement, method of difference, joint method of agreement and difference, method of residues, method of concomitant variations.
English version:
Scientific and Technical Information Processing, 2011, Volume 38, Issue 6, Pages 385–402
DOI: https://doi.org/10.3103/S0147688211060037
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. K. Finn, “J.S. Mill’s inductive methods in artificial intelligence systems. Part I”, Artificial Intelligence and Decision Making, 2010, no. 3, 3–21; Scientific and Technical Information Processing, 38:6 (2011), 385–402
Citation in format AMSBIB
\Bibitem{Fin10}
\by V.~K.~Finn
\paper J.S. Mill’s inductive methods in artificial intelligence systems. Part~I
\jour Artificial Intelligence and Decision Making
\yr 2010
\issue 3
\pages 3--21
\mathnet{http://mi.mathnet.ru/iipr502}
\elib{https://elibrary.ru/item.asp?id=17311860}
\transl
\jour Scientific and Technical Information Processing
\yr 2011
\vol 38
\issue 6
\pages 385--402
\crossref{https://doi.org/10.3103/S0147688211060037}
Linking options:
  • https://www.mathnet.ru/eng/iipr502
  • https://www.mathnet.ru/eng/iipr/y2010/i3/p3
    Cycle of papers
    This publication is cited in the following 28 articles:
    1. M. I. Zabezhailo, M. A. Mikheyenkova, Yu. Yu. Trunin, “On the Nonbinary Version of the Causality Relation in the Intelligent Analysis of Oncological Data”, Autom. Doc. Math. Linguist., 58:3 (2024), 200  crossref
    2. M. I. Zabezhailo, “Intelligent Data Analysis As an Evidence-Based Medicine Tool”, Autom. Doc. Math. Linguist., 58:2 (2024), 129  crossref
    3. S. M. Gusakova, “Analysis of Detection of Empirical Regularity in Problems with a Similarity Operation Corresponding to Global Similarity”, Autom. Doc. Math. Linguist., 58:3 (2024), 208  crossref
    4. M. I. Zabezhailo, “On the Problem of Explaining the Results of Intelligent Data Analysis”, Pattern Recognit. Image Anal., 34:3 (2024), 498  crossref
    5. N. A. Simonov, “Development of an Apparatus of Imaginative Information Representation for Neuromorphic Devices”, Russ Microelectron, 53:5 (2024), 423  crossref
    6. M. I. Zabezhailo, “Three Comprehension Test Questions for Fellow Members”, Pattern Recognit. Image Anal., 33:3 (2023), 555  crossref
    7. M. I. Zabezhailo, A. V. Amentes, “Some Features of Intelligent Analysis of Empirical Data Collections Updated with New Information, but Limited in Size”, Autom. Doc. Math. Linguist., 57:3 (2023), 172  crossref
    8. A. Grusho, N. Grusho, M. Zabezhailo, E. Timonina, Lecture Notes in Networks and Systems, 777, Proceedings of the Seventh International Scientific Conference “Intelligent Information Technologies for Industry” (IITI'23), 2023, 100  crossref
    9. V. K. Finn, “JSM Reasoning and Knowledge Discovery: Ampliative Reasoning, Causality Recognition, and Three Kinds of Completeness#”, Autom. Doc. Math. Linguist., 56:2 (2022), 79  crossref
    10. E. A. Efimova, “Analysis of Results of JSM Reasoning Applied to Covid-19 Testees' Data”, Autom. Doc. Math. Linguist., 56:6 (2022), 285  crossref
    11. M. I. Zabezhailo, “On the Problem of AI-Tools Application in Digital Control Systems”, Autom. Doc. Math. Linguist., 56:5 (2022), 229  crossref
    12. D. V. Vinogradov, “Algebraic machine learning: emphasis on efficiency”, Autom. Remote Control, 83:6 (2022), 831–846  mathnet  mathnet  crossref  crossref
    13. Alexander Grusho, Nikolai Grusho, Michael Zabezhailo, Elena Timonina, Communications in Computer and Information Science, 1552, Distributed Computer and Communication Networks, 2022, 420  crossref
    14. M. I. Zabezhailo, “On the Capacity of Families of Characteristic Functions That Ensure Diagnostic Problems Are Solved Correctly”, Sci. Tech. Inf. Proc., 49:5 (2022), 385  crossref
    15. D. V. Vinogradov, “Lattice theory for machine learning”, 49, no. 5, 2022, 379–384  mathnet  mathnet  crossref  crossref
    16. M. I. Zabezhailo, Yu. Yu. Trunin, “To the reliability of medical diagnosis based on empirical data”, 48, no. 5, 2021, 415–422  mathnet  mathnet  crossref  crossref
    17. S. M. Gusakova, A. N. Okhlupina, “Intelligent DSM Systems as an Automated Support Tool for Scientific Research on Handwriting”, Autom. Doc. Math. Linguist., 53:3 (2019), 114  crossref
    18. V. K. Finn, O. P. Shesternikova, “The Heuristics of Detection of Empirical Regularities by JSM Reasoning”, Autom. Doc. Math. Linguist., 52:5 (2018), 215  crossref
    19. V. K. Finn, O. P. Shesternikova, “On JSM reasoning applicable to unions of factbase subsets: Part 1”, Autom. Doc. Math. Linguist., 51:5 (2017), 220  crossref
    20. V. K. Finn, O. P. Shesternikova, “On JSM Reasoning Applicable to Unions of Factbase Subsets: Part 2”, Autom. Doc. Math. Linguist., 51:6 (2017), 266  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Artificial Intelligence and Decision Making
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :81
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025