Loading [MathJax]/jax/output/CommonHTML/jax.js
Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2016, Volume 58, Issue 9, Pages 1812–1817 (Mi ftt9865)  

This article is cited in 25 scientific papers (total in 25 papers)

Surface physics, thin films

Epitaxial gallium oxide on a SiC/Si substrate

S. A. Kukushkinabc, V. I. Nikolaevcde, A. V. Osipovabc, E. V. Osipovaa, A. I. Pechnikovcd, N. A. Feoktistovae

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
b Peter the Great St. Petersburg Polytechnic University
c St. Petersburg National Research University of Information Technologies, Mechanics and Optics
d Perfect Crystals LLC, St. Petersburg, Russia
e Ioffe Institute, St. Petersburg
Abstract: Well-textured gallium oxide β-Ga2O3 layers with a thickness of 1 μm and a close to epitaxial layer structure were grown by the method of chloride vapor phase epitaxy on Si(111) wafers with a nano-SiC buffer layer. In order to improve the growth, a high-quality silicon carbide buffer layer 100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The β-Ga2O3 films were thoroughly investigated using reflection high-energy electron diffraction, ellipsometry, X-ray diffraction, scanning electron microscopy, and micro-Raman spectroscopy. The investigations revealed that the films are textured with a close to epitaxial structure and consist of a pure β-phase Ga2O3 with the (ˉ201) orientation. The dependence of the dielectric constant of epitaxial β-Ga2O3 on the photon energy ranging from 0.7 to 6.5 eV in the isotropic approximation was measured.
Received: 24.03.2016
English version:
Physics of the Solid State, 2016, Volume 58, Issue 9, Pages 1876–1881
DOI: https://doi.org/10.1134/S1063783416090201
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Kukushkin, V. I. Nikolaev, A. V. Osipov, E. V. Osipova, A. I. Pechnikov, N. A. Feoktistov, “Epitaxial gallium oxide on a SiC/Si substrate”, Fizika Tverdogo Tela, 58:9 (2016), 1812–1817; Phys. Solid State, 58:9 (2016), 1876–1881
Citation in format AMSBIB
\Bibitem{KukNikOsi16}
\by S.~A.~Kukushkin, V.~I.~Nikolaev, A.~V.~Osipov, E.~V.~Osipova, A.~I.~Pechnikov, N.~A.~Feoktistov
\paper Epitaxial gallium oxide on a SiC/Si substrate
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 9
\pages 1812--1817
\mathnet{http://mi.mathnet.ru/ftt9865}
\elib{https://elibrary.ru/item.asp?id=27368756}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 9
\pages 1876--1881
\crossref{https://doi.org/10.1134/S1063783416090201}
Linking options:
  • https://www.mathnet.ru/eng/ftt9865
  • https://www.mathnet.ru/eng/ftt/v58/i9/p1812
  • This publication is cited in the following 25 articles:
    1. A. S. Grashchenko, S. A. Kukushkin, A. V. Osipov, “Nanoindentation of Nano-SiC/Si Hybrid Crystals and AlN, AlGaN, GaN, Ga2O3 Thin Films on Nano-SiC/Si”, Mech. Solids, 59:2 (2024), 605  crossref
    2. A. S. Grashchenko, S. A. Kukushkin, A. V. Osipov, “Nanoindentation of nano-SiC/Si hybrid crystals and AlN, AlGaN, GaN, Ga<sup>2</sup>O<sup>3</sup> thin films on nano-SiC/Si”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 2, 40  crossref
    3. Changbo Li, Changshun Chen, Weiyin Gao, He Dong, Yipeng Zhou, Zhongbin Wu, Chenxin Ran, “Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects”, ACS Nano, 2024  crossref
    4. Saravanan Yuvaraja, Vishal Khandelwal, Xiao Tang, Xiaohang Li, “Wide bandgap semiconductor-based integrated circuits”, Chip, 2:4 (2023), 100072  crossref
    5. Xing Lu, Yuxin Deng, Yanli Pei, Zimin Chen, Gang Wang, “Recent advances in NiO/Ga2O3 heterojunctions for power electronics”, J. Semicond., 44:6 (2023), 061802  crossref
    6. “ZnO/SiC/Porous-Si/Si Heterostructure: Obtaining and Properties”, Nanosistemi, Nanomateriali, Nanotehnologii, 20:3 (2022)  crossref
    7. Tobias Hadamek, Agham B. Posadas, Fatima Al-Quaiti, David J. Smith, Martha R. McCartney, Eric Dombrowski, Alexander A. Demkov, “Epitaxial growth of β-Ga2O3 on SrTiO3 (001) and SrTiO3-buffered Si (001) substrates by plasma-assisted molecular beam epitaxy”, Journal of Applied Physics, 131:14 (2022)  crossref
    8. S. Baskaran, M. Shunmugathammal, C. Sivamani, S. Ravi, P. Murugapandiyan, N. Ramkumar, “UWBG AlN/β-Ga2O3 HEMT on Silicon Carbide Substrate for Low Loss Portable Power Converters and RF Applications”, Silicon, 14:17 (2022), 11079  crossref
    9. Sandeep Vura, Usman Ul Muazzam, Vishnu Kumar, Sai Charan Vanjari, Rangarajan Muralidharan, Nath Digbijoy, Pavan Nukala, Srinivasan Raghavan, “Monolithic Epitaxial Integration of β-Ga2O3 with 100 Si for Deep Ultraviolet Photodetectors”, ACS Appl. Electron. Mater., 4:4 (2022), 1619  crossref
    10. Xueqiang Ji, Chao Lu, Zuyong Yan, Li Shan, Xu Yan, Jinjin Wang, Jianying Yue, Xiaohui Qi, Zeng Liu, Weihua Tang, Peigang Li, “A review of gallium oxide-based power Schottky barrier diodes”, J. Phys. D: Appl. Phys., 55:44 (2022), 443002  crossref
    11. S. A. Kukushkin, A. V. Osipov, “Epitaxial Silicon Carbide on Silicon. Method of Coordinated Substitution of Atoms (A Review)”, Russ J Gen Chem, 92:4 (2022), 584  crossref
    12. Sergey Kukushkin, Andrey Osipov, Alexey Redkov, Advanced Structured Materials, 164, Mechanics and Control of Solids and Structures, 2022, 335  crossref
    13. L A Mochalov, A A Logunov, M A Kudryashov, “Plasma-chemical deposition of gallium oxide layers by oxidation of gallium in the hydrogen-oxygen mixture”, J. Phys.: Conf. Ser., 1967:1 (2021), 012037  crossref
    14. L A Mochalov, A A Logunov, I O Prokhorov, “Gallium oxide thin films synthesis in different phase composition by gallium interaction with oxygen in oxygen-hydrogen plasma on silicon substrates”, J. Phys.: Conf. Ser., 1967:1 (2021), 012036  crossref
    15. Tobias Hadamek, Agham B. Posadas, Fatima Al-Quaiti, David J. Smith, Martha R. McCartney, Alexander A. Demkov, “β-Ga2O3 on Si (001) grown by plasma-assisted MBE with γ-Al2O3 (111) buffer layer: Structural characterization”, AIP Advances, 11:4 (2021)  crossref
    16. R.M. Balabai, V.M. Zdeschits, M.V. Naumenko, “Modifіkatsіya elektronnikh vlastivostei nadtonkikh plіvok β-Ga2O3 mekhanіchnimi vplivami”, Ukr. J. Phys., 66:12 (2021), 1048  crossref
    17. V. L. Abdrakhmanov, D. V. Zav'yalov, V. I. Konchenkov, S. V. Kryuchkov, “Effect of a Strong Electromagnetic Wave on the Conductivity of β-Ga2O3”, Bull. Russ. Acad. Sci. Phys., 84:1 (2020), 53  crossref
    18. S. Yu. Davydov, O. V. Posrednik, “Adsorption of I and VII groups atoms on the silicon carbide polytypes”, Semiconductors, 54:11 (2020), 1410–1416  mathnet  mathnet  crossref  crossref
    19. Neeraj Nepal, D. Scott Katzer, Brian P. Downey, Virginia D. Wheeler, Luke O. Nyakiti, David F. Storm, Matthew T. Hardy, Jaime A. Freitas, Eric N. Jin, Diego Vaca, Luke Yates, Samuel Graham, Satish Kumar, David J. Meyer, “Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 38:6 (2020)  crossref
    20. Leonid Mochalov, Alexander Logunov, Daniela Gogova, Sergey Zelentsov, Igor Prokhorov, Nikolay Starostin, Aleksey Letnianchik, Vladimir Vorotyntsev, “Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma”, Opt Quant Electron, 52:12 (2020)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025