Abstract:
The paper deals with conditions for the existence of solutions of the equations
−n∑i=1DiAi(x,u,Du)+A0(x,u)=f(x),x∈Rn,
considered in the whole space Rn, n⩾2. The functions Ai(x,u,ξ), i=1,…,n, A0(x,u), and f(x) can arbitrarily grow as |x|→∞. These functions satisfy generalized conditions of the monotone operator theory in the arguments u∈R and ξ∈Rn. We prove the existence theorem for a solution u∈W1,ploc(Rn) under the condition p>n.
Citation:
G. I. Laptev, “Existence of solutions of certain quasilinear elliptic equations in RN without conditions at infinity”, Fundam. Prikl. Mat., 12:4 (2006), 133–147; J. Math. Sci., 150:5 (2008), 2384–2394
\Bibitem{Lap06}
\by G.~I.~Laptev
\paper Existence of solutions of certain quasilinear elliptic equations in~$\mathbb R^N$ without conditions at infinity
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 4
\pages 133--147
\mathnet{http://mi.mathnet.ru/fpm963}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314150}
\zmath{https://zbmath.org/?q=an:1151.35353}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 5
\pages 2384--2394
\crossref{https://doi.org/10.1007/s10958-008-0137-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42149120220}
Linking options:
https://www.mathnet.ru/eng/fpm963
https://www.mathnet.ru/eng/fpm/v12/i4/p133
This publication is cited in the following 6 articles:
Omar Benslimane, Ahmed Aberqi, Jaouad Bennouna, “On some nonlinear anisotropic elliptic equations in anisotropic Orlicz space”, AJMS, 29:1 (2023), 29
Ahmed Aberqi, Jaouad Bennouna, Omar Benslimane, Maria Alessandra Ragusa, “Weak solvability of nonlinear elliptic equations involving variable exponents”, DCDS-S, 16:6 (2023), 1142
Omar Benslimane, Ahmed Aberqi, Jaouad Bennouna, “Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space”, Rend. Circ. Mat. Palermo, II. Ser, 70:3 (2021), 1579
L. M. Kozhevnikova, A. Sh. Kamalеtdinov, “Existence of solutions of anisotropic elliptic equations with variable indices of nonlinearity in Rn”, J. Math. Sci. (N. Y.), 257:1 (2021), 48–60
Kamaletdinov A.Sh., Kozhevnikova L.M., Melnik L.Yu., “Existence of Solutions of Anisotropic Elliptic Equations With Variable Exponents in Unbounded Domains”, Lobachevskii J. Math., 39:2, 3, SI (2018), 224–235
L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149