|
Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 4, Pages 133–147
(Mi fpm963)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Existence of solutions of certain quasilinear elliptic equations in $\mathbb R^N$ without conditions at infinity
G. I. Laptev Russian State Social University
Abstract:
The paper deals with conditions for the existence of solutions of the equations
$$
-\sum_{i=1}^nD_iA_i(x,u,Du)+A_0(x,u)=f(x),\quad x\in\mathbb R^n,
$$
considered in the whole space $\mathbb R^n$, $n\ge2$. The functions $A_i(x,u,\xi)$, $i=1,\dots,n$, $A_0(x,u)$, and $f(x)$ can arbitrarily grow as $|x|\to\infty$. These functions satisfy generalized conditions of the monotone operator theory in the arguments $u\in\mathbb R$ and $\xi\in\mathbb R^n$. We prove the existence theorem for a solution $u\in W_{\mathrm{loc}}^{1,p}(\mathbb R^n)$ under the condition $p>n$.
Citation:
G. I. Laptev, “Existence of solutions of certain quasilinear elliptic equations in $\mathbb R^N$ without conditions at infinity”, Fundam. Prikl. Mat., 12:4 (2006), 133–147; J. Math. Sci., 150:5 (2008), 2384–2394
Linking options:
https://www.mathnet.ru/eng/fpm963 https://www.mathnet.ru/eng/fpm/v12/i4/p133
|
|