Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 4, Pages 113–132 (Mi fpm962)  

This article is cited in 4 scientific papers (total in 4 papers)

Decay of the solution of the first mixed problem for a high-order parabolic equation with minor terms

L. M. Kozhevnikovaa, F. Kh. Mukminovb

a Sterlitamak State Pedagogical Academy
b Bashkir State Pedagogical University
Full-text PDF (233 kB) Citations (4)
References:
Abstract: In a cylindric domain $D=(0,\infty)\times\Omega$, where $\Omega\subset \mathbb{R}_{n+1}$ is an unbounded domain, the first mixed problem for a high-order parabolic equation
\begin{gather*} u_t+(-1)^kD_x^k(a(x,\mathbf{y})D_x^ku)+\sum\limits_{i=l}^m\sum\limits_{|\alpha|=|\beta|=i}(-1)^i D_\mathbf{y}^{\alpha}(b_{\alpha\beta}(x,\mathbf{y})D_{\mathbf{y}}^{\beta}u)=0, \\ l\leq m,\quad k,l,m\in \mathbb{N}, \end{gather*}
is considered. The boundary values are homogeneous and the initial value is a finite function. In terms of new geometrical characteristic of domain, the upper estimate of $L_2$-norm $\|u(t)\|$ of the solution to the problem is established. In particular, in domains $\{(x,\mathbf y)\in\mathbb{R}_{n+1}\mid x>0,\ |y_1|<x^a\}$, $0<a<q/l$, under the assumption that the upper an lower symbols of the operator $L$ are separated from zero, this estimate takes the form
$$ \|u(t)\|\leq M\exp(-\varkappa_2t^{b})\|\varphi\|,\quad b=\frac{k-la}{k-la+2lak}. $$
This estimate is determined by minor terms of the equation. The sharpness of the estimate for the wide class of unbounded domains is proved in the case $k=l=m=1$.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 150, Issue 5, Pages 2369–2383
DOI: https://doi.org/10.1007/s10958-008-0136-7
Bibliographic databases:
UDC: 517.956.4
Language: Russian
Citation: L. M. Kozhevnikova, F. Kh. Mukminov, “Decay of the solution of the first mixed problem for a high-order parabolic equation with minor terms”, Fundam. Prikl. Mat., 12:4 (2006), 113–132; J. Math. Sci., 150:5 (2008), 2369–2383
Citation in format AMSBIB
\Bibitem{KozMuk06}
\by L.~M.~Kozhevnikova, F.~Kh.~Mukminov
\paper Decay of the solution of the first mixed problem for a~high-order parabolic equation with minor terms
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 4
\pages 113--132
\mathnet{http://mi.mathnet.ru/fpm962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314149}
\zmath{https://zbmath.org/?q=an:1151.35380}
\elib{https://elibrary.ru/item.asp?id=11143779}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 5
\pages 2369--2383
\crossref{https://doi.org/10.1007/s10958-008-0136-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42149164384}
Linking options:
  • https://www.mathnet.ru/eng/fpm962
  • https://www.mathnet.ru/eng/fpm/v12/i4/p113
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024