Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 4, Pages 149–167 (Mi fpm964)  

This article is cited in 1 scientific paper (total in 1 paper)

Counting solutions in bifurcation problems

J. Lopez-Gomez, C. Mora-Corral

Universidad Complutense de Madrid
Full-text PDF (220 kB) Citations (1)
References:
Abstract: In this paper, we use the topological degree to obtain some sharp lower bounds for the number of solutions of the parameter slices of the semi-bounded components of the set of nontrivial solutions of an abstract nonlinear equation with a trivial state. By a semi-bounded component, we mean a component that is bounded in one direction of the parameter. The spectrum of the linearization of the equation at the trivial state is not assumed to be discrete.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 150, Issue 5, Pages 2395–2407
DOI: https://doi.org/10.1007/s10958-008-0138-5
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: J. Lopez-Gomez, C. Mora-Corral, “Counting solutions in bifurcation problems”, Fundam. Prikl. Mat., 12:4 (2006), 149–167; J. Math. Sci., 150:5 (2008), 2395–2407
Citation in format AMSBIB
\Bibitem{LopMor06}
\by J.~Lopez-Gomez, C.~Mora-Corral
\paper Counting solutions in bifurcation problems
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 4
\pages 149--167
\mathnet{http://mi.mathnet.ru/fpm964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314151}
\zmath{https://zbmath.org/?q=an:1150.47370}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 5
\pages 2395--2407
\crossref{https://doi.org/10.1007/s10958-008-0138-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249102604}
Linking options:
  • https://www.mathnet.ru/eng/fpm964
  • https://www.mathnet.ru/eng/fpm/v12/i4/p149
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024