Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2011, Volume 47, Issue 2, Pages 23–29 (Mi fgv1079)  

This article is cited in 11 scientific papers (total in 11 papers)

Mathematical modeling of melting of nano-sized metal particles

A. V. Fedorov, A. V. Shulgin

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Citations (11)
Abstract: A physicomathematical model is developed to describe melting of nano-sized aluminum and gold particles within the framework of a single-phase Stefan problem with allowance for the experimentally established fact of melting temperature reduction with decreasing particle radius. The time of melting of aluminum and gold nanoparticles is determined as a function of the particle radius and ambient temperature. At identical ratios of the ambient temperature to the melting temperature, the ratio of the time of melting of aluminum particles to the time of melting of gold particles is found to remain approximately constant and equal to 4.
Keywords: mathematical modeling, nanoparticles, melting, Stefan problem.
Received: 17.04.2010
English version:
Combustion, Explosion and Shock Waves, 2011, Volume 47, Issue 2, Pages 147–152
DOI: https://doi.org/10.1134/S001050821102002X
Bibliographic databases:
Document Type: Article
UDC: 662.612.32:539.23
Language: Russian
Citation: A. V. Fedorov, A. V. Shulgin, “Mathematical modeling of melting of nano-sized metal particles”, Fizika Goreniya i Vzryva, 47:2 (2011), 23–29; Combustion, Explosion and Shock Waves, 47:2 (2011), 147–152
Citation in format AMSBIB
\Bibitem{FedShu11}
\by A.~V.~Fedorov, A.~V.~Shulgin
\paper Mathematical modeling of melting of nano-sized metal particles
\jour Fizika Goreniya i Vzryva
\yr 2011
\vol 47
\issue 2
\pages 23--29
\mathnet{http://mi.mathnet.ru/fgv1079}
\elib{https://elibrary.ru/item.asp?id=16364774}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2011
\vol 47
\issue 2
\pages 147--152
\crossref{https://doi.org/10.1134/S001050821102002X}
Linking options:
  • https://www.mathnet.ru/eng/fgv1079
  • https://www.mathnet.ru/eng/fgv/v47/i2/p23
  • This publication is cited in the following 11 articles:
    1. Xiaoya Chang, Qingzhao Chu, Dongping Chen, “Monitoring the melting behavior of boron nanoparticles using a neural network potential”, Phys. Chem. Chem. Phys., 25:18 (2023), 12841  crossref
    2. Marcin Łapiński, Robert Kozioł, Wojciech Skubida, Piotr Winiarz, Rowa Mahjoub Yahia Elhassan, Wojciech Sadowski, Barbara Kościelska, “Transformation of bimetallic Ag–Cu thin films into plasmonically active composite nanostructures”, Sci Rep, 13:1 (2023)  crossref
    3. Yunya Feng, Xiaocun Wang, Fei Xiao, “Low-temperature calcination of convenient micro-sized copper ink with surface activation and synchronous protection by in-situ chemisorbed cupric formate”, J Mater Sci: Mater Electron, 33:24 (2022), 19297  crossref
    4. T.G. Myers, M.G. Hennessy, M. Calvo-Schwarzwälder, “The Stefan problem with variable thermophysical properties and phase change temperature”, International Journal of Heat and Mass Transfer, 149 (2020), 118975  crossref
    5. Suset Rodríguez-Alemán, Ernesto M. Hernández-Cooper, José A. Otero, “Consequences of total thermal balance during melting and solidification of high temperature phase change materials”, Thermal Science and Engineering Progress, 20 (2020), 100750  crossref
    6. Mustafa Turkyilmazoglu, “Stefan problems for moving phase change materials and multiple solutions”, International Journal of Thermal Sciences, 126 (2018), 67  crossref
    7. A V Fedorov, S A Lavruk, “An influence of expressions for thermophysical parameters on calculation results of melting and detonation combustion of aluminum suspensions”, J. Phys.: Conf. Ser., 1128 (2018), 012069  crossref
    8. M. Hou, “Solid–liquid and liquid–solid transitions in metal nanoparticles”, Phys. Chem. Chem. Phys., 19:8 (2017), 5994  crossref
    9. A. V. Fedorov, A. V. Shul'gin, S. A. Lavruk, “Investigation of the physical properties of iron nanoparticles in the course of the melting and solidification”, Phys. Metals Metallogr., 118:6 (2017), 572  crossref
    10. T.G. Myers, “Mathematical modelling of phase change at the nanoscale”, International Communications in Heat and Mass Transfer, 76 (2016), 59  crossref
    11. H. Ribera, T. G. Myers, “A mathematical model for nanoparticle melting with size-dependent latent heat and melt temperature”, Microfluid Nanofluid, 20:11 (2016)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025