Abstract:
A physicomathematical model is developed to describe melting of nano-sized aluminum and gold particles within the framework of a single-phase Stefan problem with allowance for the experimentally established fact of melting temperature reduction with decreasing particle radius. The time of melting of aluminum and gold nanoparticles is determined as a function of the particle radius and ambient temperature. At identical ratios of the ambient temperature to the melting temperature, the ratio of the time of melting of aluminum particles to the time of melting of gold particles is found to remain approximately constant and equal to 4.
Keywords:
mathematical modeling, nanoparticles, melting, Stefan problem.
Citation:
A. V. Fedorov, A. V. Shulgin, “Mathematical modeling of melting of nano-sized metal particles”, Fizika Goreniya i Vzryva, 47:2 (2011), 23–29; Combustion, Explosion and Shock Waves, 47:2 (2011), 147–152
\Bibitem{FedShu11}
\by A.~V.~Fedorov, A.~V.~Shulgin
\paper Mathematical modeling of melting of nano-sized metal particles
\jour Fizika Goreniya i Vzryva
\yr 2011
\vol 47
\issue 2
\pages 23--29
\mathnet{http://mi.mathnet.ru/fgv1079}
\elib{https://elibrary.ru/item.asp?id=16364774}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2011
\vol 47
\issue 2
\pages 147--152
\crossref{https://doi.org/10.1134/S001050821102002X}
Linking options:
https://www.mathnet.ru/eng/fgv1079
https://www.mathnet.ru/eng/fgv/v47/i2/p23
This publication is cited in the following 11 articles:
Xiaoya Chang, Qingzhao Chu, Dongping Chen, “Monitoring the melting behavior of boron nanoparticles using a neural network potential”, Phys. Chem. Chem. Phys., 25:18 (2023), 12841
Marcin Łapiński, Robert Kozioł, Wojciech Skubida, Piotr Winiarz, Rowa Mahjoub Yahia Elhassan, Wojciech Sadowski, Barbara Kościelska, “Transformation of bimetallic Ag–Cu thin films into plasmonically active composite nanostructures”, Sci Rep, 13:1 (2023)
Yunya Feng, Xiaocun Wang, Fei Xiao, “Low-temperature calcination of convenient micro-sized copper ink with surface activation and synchronous protection by in-situ chemisorbed cupric formate”, J Mater Sci: Mater Electron, 33:24 (2022), 19297
T.G. Myers, M.G. Hennessy, M. Calvo-Schwarzwälder, “The Stefan problem with variable thermophysical properties and phase change temperature”, International Journal of Heat and Mass Transfer, 149 (2020), 118975
Suset Rodríguez-Alemán, Ernesto M. Hernández-Cooper, José A. Otero, “Consequences of total thermal balance during melting and solidification of high temperature phase change materials”, Thermal Science and Engineering Progress, 20 (2020), 100750
Mustafa Turkyilmazoglu, “Stefan problems for moving phase change materials and multiple solutions”, International Journal of Thermal Sciences, 126 (2018), 67
A V Fedorov, S A Lavruk, “An influence of expressions for thermophysical parameters on calculation results of melting and detonation combustion of aluminum suspensions”, J. Phys.: Conf. Ser., 1128 (2018), 012069
M. Hou, “Solid–liquid and liquid–solid transitions in metal nanoparticles”, Phys. Chem. Chem. Phys., 19:8 (2017), 5994
A. V. Fedorov, A. V. Shul'gin, S. A. Lavruk, “Investigation of the physical properties of iron nanoparticles in the course of the melting and solidification”, Phys. Metals Metallogr., 118:6 (2017), 572
T.G. Myers, “Mathematical modelling of phase change at the nanoscale”, International Communications in Heat and Mass Transfer, 76 (2016), 59
H. Ribera, T. G. Myers, “A mathematical model for nanoparticle melting with size-dependent latent heat and melt temperature”, Microfluid Nanofluid, 20:11 (2016)