Abstract:
A kinetic model is built to describe ignition and pyrolysis of n-decane. The model involves 1021 reversible reactions and 144 species and includes both the high-temperature and low-temperature oxidation mechanisms. The model is tested against experimental data on the ignition delay time, changes in the concentration of OH radicals behind the reflected shock wave, and evolution of various species during n-decane pyrolysis in a flow reactor in a wide range of temperatures ($T$ = 650–1640 K), pressures ($p$ = 1–80 atm), and equivalence ratios ($\phi$ = 0.5–3). This kinetic model ensures a more accurate description of experimental data on the ignition delay time than other known kinetic models, especially at low initial temperatures.
Keywords:
ignition, combustion, heavy hydrocarbons, low-temperature mechanism, kinetic model.
Citation:
N. S. Titova, S. A. Torokhov, A. M. Starik, “On kinetic mechanisms of $n$-decane oxidation”, Fizika Goreniya i Vzryva, 47:2 (2011), 3–22; Combustion, Explosion and Shock Waves, 47:2 (2011), 129–146
\Bibitem{TitTorSta11}
\by N.~S.~Titova, S.~A.~Torokhov, A.~M.~Starik
\paper On kinetic mechanisms of $n$-decane oxidation
\jour Fizika Goreniya i Vzryva
\yr 2011
\vol 47
\issue 2
\pages 3--22
\mathnet{http://mi.mathnet.ru/fgv1078}
\elib{https://elibrary.ru/item.asp?id=16364773}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2011
\vol 47
\issue 2
\pages 129--146
\crossref{https://doi.org/10.1134/S0010508211020018}
Linking options:
https://www.mathnet.ru/eng/fgv1078
https://www.mathnet.ru/eng/fgv/v47/i2/p3
This publication is cited in the following 21 articles:
Yi-Jhen Wu, Yang-Yao Niu, “Impact of Intermediate Species in Simulating Oblique Detonation with Pre-Vaporized N-Decane/air Mixtures Substituting for Kerosene/Air Mixtures”, Combustion Science and Technology, 2024, 1
Bernard DESMET, Thermodynamics of Heat Engines, 2022, 133
Zhengchuang Zhao, Xiaobin Huang, Haoqiang Sheng, Zhijia Chen, Hong Liu, “Enhanced low-temperature stable combustion of hydrocarbon with suppressing the Leidenfrost effect”, International Journal of Heat and Mass Transfer, 185 (2022), 122413
A.M. Savel'ev, V.V. Smirnov, N.S. Titova, D.A. Yagodnikov, “Diffusion combustion of n-decane with unpassivated aluminum nanoparticles additives: Analysis of mechanism and numerical simulation”, Combustion and Flame, 236 (2022), 111761
Zhengchuang Zhao, Xiaobin Huang, Haoqiang Sheng, Zhijia Chen, Hong Liu, “Promoted stable combustion of alcohol-based fuel accompanied by inhibition of Leidenfrost effect in a wide temperature range”, Energy, 234 (2021), 121248
Yu. V. Tunik, G. Ya. Gerasimov, V. Yu. Levashov, “Comparative Analysis of the Detonation Combustion of Kerosene and Gasoline Vapors in a Laval Nozzle”, Russ. J. Phys. Chem. B, 15:5 (2021), 801
Yu. V. Tunik, G. Ya. Gerasimov, V. Yu. Levashov, M. S. Assad, “Efficiency of detonation combustion of kerosene vapor in nozzles of various configurations”, High Temperature, 60:1, Suppl. 1 (2022), S52–S58
G. Ya. Gerasimov, Yu. V. Tunik, P. V. Kozlov, V. Yu. Levashov, I. E. Zabelinskii, N. G. Bykova, “Simplified Kinetic Model of Kerosene Combustion”, Russ. J. Phys. Chem. B, 15:4 (2021), 637
V. V. Leschevich, O. G. Penyazkov, S. Yu. Shimchenko, “Specific features of n-decane vapors self-ignition in air at temperatures of 600–800 K”, Dokl. Akad. nauk, 64:6 (2020), 747
A. M. Savel'ev, P. S. Kuleshov, B. I. Lukhovitskii, A. V. Pelevkin, V. A. Savel'eva, A. S. Sharipov, “On the kinetic mechanism of ignition of diborane mixturesvwith air”, Combustion, Explosion and Shock Waves, 56:3 (2020), 249–266
Yu. V. Tunik, G. Ya. Gerasimov, V. Yu. Levashov, N. A. Slavinskaya, “Numerical simulation of detonation combustion of kerosene vapors in an expanding nozzle”, Combustion, Explosion and Shock Waves, 56:3 (2020), 344–352
Qi Zhou, Taotao Zhan, Junshuai Chen, Maogang He, Ying Zhang, “Measurement of the speed of sound in n-decane at temperatures from (298.32 to 653.95) K and pressures up to 10.0 MPa”, The Journal of Chemical Thermodynamics, 148 (2020), 106127
V. E. Kozlov, N. S. Titova, S. A. Torokhov, “Numerical Study of the Effect of Hydrogen or Syngas Additions to n-Decane on the Harmful Substance Emission from a Homogeneous Combustion Chamber”, Russ. J. Phys. Chem. B, 14:3 (2020), 395
Xiaojie Li, Suyang Qin, Xiaobin Huang, Hong Liu, “Multi-component effect and reaction mechanism for low-temperature ignition of kerosene with composite enhancer”, Combustion and Flame, 199 (2019), 401
Charu Srivatsa, Jonathan Mattson, Christopher Depcik, SAE Technical Paper Series, 1, SAE Technical Paper Series, 2018
Cary Presser, Ashot Nazarian, “Laser-Driven Calorimetry of Single-Component Liquid Hydrocarbons”, Energy Fuels, 31:7 (2017), 6732
V. D. Kobtsev, D. N. Kozlov, S. A. Kostritsa, V. V. Smirnov, O. M. Stel'makh, A. A. Tumanov, “Laser Spectrometric Measurement System for Local Express Diagnostics of Flame at Combustion of Liquid Hydrocarbon Fuels”, Opt. Spectrosc., 120:3 (2016), 492
Alexander M. Starik, Leonid V. Bezgin, Valery I. Kopchenov, Nataliya S. Titova, Sergey A. Torokhov, “Kinetic analysis of n-decane–hydrogen blend combustion in premixed and non-premixed supersonic flows”, Combustion Theory and Modelling, 20:1 (2016), 99
Valery V. Smirnov, Sergey A. Kostritsa, Vitaly D. Kobtsev, Nataliya S. Titova, Aleksander M. Starik, “Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles”, Combustion and Flame, 162:10 (2015), 3554
Alexander M. Starik, Alexander B. Lebedev, Alexander M. Savel'ev, Nataliya S. Titova, Pénélope Leyland, “Impact of Operating Regime on Aviation Engine Emissions: Modeling Study”, Journal of Propulsion and Power, 29:3 (2013), 709