Loading [MathJax]/jax/output/SVG/config.js
Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2011, Volume 47, Issue 2, Pages 30–44 (Mi fgv1080)  

This article is cited in 18 scientific papers (total in 18 papers)

Degree of dispersion of metal combustion products in a laminar dust flame

N. I. Poletaev, A. N. Zolotko, Yu. A. Doroshenko

Institute of Combustion and Nontraditional Technologies, Mechnikov Odessa National University, Odessa, 65082, Ukraine
Citations (18)
Abstract: This paper presents the results of experimental and theoretical studies of the effect of parameters of laminar dust flames of metal particles (Al, Fe, Ti, and Zr) on the degree of dispersion of the combustion products of these metals in oxygen-containing media. Extensive experiments with Al powders showed that with variation in the mass concentrations of fuel and oxidizer, fuel particle size, type of carrier gas, and conditions of dust flame production, the most probable particle diameter varied in the range of 50–70 nm. Similar results were also obtained for other metals. The results of the experiments agree with numerical calculations. The experiments showed that the particle size of metal combustion products in laminar dust flames can be substantially increasing. The proposed method for controlling the particle size is based on the ionization of the gas phase by adding impurities to the initial fuel to affect nucleation conditions in the flame.
Keywords: laminar dust flame, gas-disperse synthesis, nanopowders of metal oxides, particle size of the combustion product.
Received: 25.02.2010
Accepted: 03.09.2010
English version:
Combustion, Explosion and Shock Waves, 2011, Volume 47, Issue 2, Pages 153–165
DOI: https://doi.org/10.1134/S0010508211020031
Bibliographic databases:
Document Type: Article
UDC: 536.46
Language: Russian
Citation: N. I. Poletaev, A. N. Zolotko, Yu. A. Doroshenko, “Degree of dispersion of metal combustion products in a laminar dust flame”, Fizika Goreniya i Vzryva, 47:2 (2011), 30–44; Combustion, Explosion and Shock Waves, 47:2 (2011), 153–165
Citation in format AMSBIB
\Bibitem{PolZolDor11}
\by N.~I.~Poletaev, A.~N.~Zolotko, Yu.~A.~Doroshenko
\paper Degree of dispersion of metal combustion products in a laminar dust flame
\jour Fizika Goreniya i Vzryva
\yr 2011
\vol 47
\issue 2
\pages 30--44
\mathnet{http://mi.mathnet.ru/fgv1080}
\elib{https://elibrary.ru/item.asp?id=16364775}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2011
\vol 47
\issue 2
\pages 153--165
\crossref{https://doi.org/10.1134/S0010508211020031}
Linking options:
  • https://www.mathnet.ru/eng/fgv1080
  • https://www.mathnet.ru/eng/fgv/v47/i2/p30
  • This publication is cited in the following 18 articles:
    1. Xingliang Wu, Xu Xiao, Penggang Jin, Fengyuan Jiao, Yue Zhao, Suyue Li, Xueqiang Shi, Yanwu Yu, Sen Xu, Weiguo Cao, “Effect of mass ratio on flame propagation behaviors and thermal radiation performance of Al–AlH3 composite dust”, Case Studies in Thermal Engineering, 61 (2024), 104888  crossref
    2. O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. II. Characteristics of condensed combustion products”, Combustion, Explosion and Shock Waves, 58:6 (2022), 674–687  mathnet  mathnet  crossref  crossref
    3. N. S. Belousova, O. G. Glotov, “Laws of motion and aerodynamic drag coefficient for large titanium particles burning in air”, Thermophys. Aeromech., 29:4 (2022), 557  crossref
    4. Vladimir P. Dotsenko, Irina V. Berezovskaya, Nikolay I. Poletaev, Maria E. Khlebnikova, Igor V. Zatovsky, Konstantin L. Bychkov, Olena V. Khomenko, Ninel P. Efryushina, “Combustion synthesis and nontrivial luminescence properties of nanosized δ*-Al2O3 doped with Cr3+ ions”, Solid State Sciences, 119 (2021), 106704  crossref
    5. O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes”, Combustion, Explosion and Shock Waves, 57:6 (2021), 651–662  mathnet  mathnet  crossref  crossref
    6. Oleg G. Glotov, Innovative Energetic Materials: Properties, Combustion Performance and Application, 2020, 405  crossref
    7. N S Belousova, O G Glotov, A V Guskov, “Study of the free falling particles trajectory at the burning monolithic titanium particles”, J. Phys.: Conf. Ser., 1214 (2019), 012010  crossref
    8. N. I. Poletaev, M. Y. Khlebnikova, “Coagulation of the Ionized Combustion Products in a Dust Flame of Aluminum Particles”, Journal of Chemistry, 2019 (2019), 1  crossref
    9. O. G. Glotov, “Ignition and combustion of titanium particles: experimental methods and results”, Phys. Usp., 62:2 (2019), 131–165  mathnet  mathnet  crossref  crossref  isi  scopus
    10. N. I. Poletaev, M. Y. Khlebnikova, K. Y. Khanchych, “Producing and properties of zinc dust flames”, Combustion Science and Technology, 190:6 (2018), 1096  crossref
    11. M. Khlebnykova, K. Khanchych, N. Poletaev, 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 2018, 01SPN25-1  crossref
    12. Alexander M. Savel'ev, Alexander M. Starik, “The formation of (Al2O3)n clusters as a probable mechanism of aluminum oxide nucleation during the combustion of aluminized fuels: Numerical analysis”, Combustion and Flame, 196 (2018), 223  crossref
    13. N. I. Poletaev, “Relationship between the dusty flame propagation velocity and the regime of combustion of fuel particles”, Combustion, Explosion and Shock Waves, 52:6 (2016), 673–682  mathnet  mathnet  crossref  crossref
    14. Oleg G. Glotov, Vladimir E. Zarko, Energetic Nanomaterials, 2016, 285  crossref
    15. I V Berezovskaya, N I Poletaev, M E Khlebnikova, I V Zatovsky, K L Bychkov, N P Efryushina, O V Khomenko, V P Dotsenko, “Luminescence study of nanosized Al2O3:Tb3+obtained by gas-dispersed synthesis”, Methods Appl. Fluoresc., 4:3 (2016), 034011  crossref
    16. N. I. Poletaev, “Firmation of condensed combustion products in dust flames of metals: Coagulation stage”, Combustion, Explosion and Shock Waves, 51:4 (2015), 444–456  mathnet  mathnet  crossref  crossref
    17. N.I. Poletaev, A.N. Zolotko, Yu.A. Doroshenko, M.E. Khlebnikova, “Smoky Plasma in a Dust Flame”, Ukr. J. Phys., 59:4 (2014), 379  crossref
    18. V.P. Dotsenko, I.V. Berezovskaya, E.V. Zubar, N.P. Efryushina, N.I. Poletaev, Yu.A. Doroshenko, G.B. Stryganyuk, A.S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet”, Journal of Alloys and Compounds, 550 (2013), 159  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:46
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025