Abstract:
This paper presents the results of experimental and theoretical studies of the effect of parameters of laminar dust flames of metal particles (Al, Fe, Ti, and Zr) on the degree of dispersion of the combustion products of these metals in oxygen-containing media. Extensive experiments with Al powders showed that with variation in the mass concentrations of fuel and oxidizer, fuel particle size, type of carrier gas, and conditions of dust flame production, the most probable particle diameter varied in the range of 50–70 nm. Similar results were also obtained for other metals. The results of the experiments agree with numerical calculations. The experiments showed that the particle size of metal combustion products in laminar dust flames can be substantially increasing. The proposed method for controlling the particle size is based on the ionization of the gas phase by adding impurities to the initial fuel to affect nucleation conditions in the flame.
Keywords:
laminar dust flame, gas-disperse synthesis, nanopowders of metal oxides, particle size of the combustion product.
Citation:
N. I. Poletaev, A. N. Zolotko, Yu. A. Doroshenko, “Degree of dispersion of metal combustion products in a laminar dust flame”, Fizika Goreniya i Vzryva, 47:2 (2011), 30–44; Combustion, Explosion and Shock Waves, 47:2 (2011), 153–165
\Bibitem{PolZolDor11}
\by N.~I.~Poletaev, A.~N.~Zolotko, Yu.~A.~Doroshenko
\paper Degree of dispersion of metal combustion products in a laminar dust flame
\jour Fizika Goreniya i Vzryva
\yr 2011
\vol 47
\issue 2
\pages 30--44
\mathnet{http://mi.mathnet.ru/fgv1080}
\elib{https://elibrary.ru/item.asp?id=16364775}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2011
\vol 47
\issue 2
\pages 153--165
\crossref{https://doi.org/10.1134/S0010508211020031}
Linking options:
https://www.mathnet.ru/eng/fgv1080
https://www.mathnet.ru/eng/fgv/v47/i2/p30
This publication is cited in the following 18 articles:
Xingliang Wu, Xu Xiao, Penggang Jin, Fengyuan Jiao, Yue Zhao, Suyue Li, Xueqiang Shi, Yanwu Yu, Sen Xu, Weiguo Cao, “Effect of mass ratio on flame propagation behaviors and thermal radiation performance of Al–AlH3 composite dust”, Case Studies in Thermal Engineering, 61 (2024), 104888
O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. II. Characteristics of condensed combustion products”, Combustion, Explosion and Shock Waves, 58:6 (2022), 674–687
N. S. Belousova, O. G. Glotov, “Laws of motion and aerodynamic drag coefficient for large titanium particles burning in air”, Thermophys. Aeromech., 29:4 (2022), 557
Vladimir P. Dotsenko, Irina V. Berezovskaya, Nikolay I. Poletaev, Maria E. Khlebnikova, Igor V. Zatovsky, Konstantin L. Bychkov, Olena V. Khomenko, Ninel P. Efryushina, “Combustion synthesis and nontrivial luminescence properties of nanosized δ*-Al2O3 doped with Cr3+ ions”, Solid State Sciences, 119 (2021), 106704
O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes”, Combustion, Explosion and Shock Waves, 57:6 (2021), 651–662
Oleg G. Glotov, Innovative Energetic Materials: Properties, Combustion Performance and Application, 2020, 405
N S Belousova, O G Glotov, A V Guskov, “Study of the free falling particles trajectory at the burning monolithic titanium particles”, J. Phys.: Conf. Ser., 1214 (2019), 012010
N. I. Poletaev, M. Y. Khlebnikova, “Coagulation of the Ionized Combustion Products in a Dust Flame of Aluminum Particles”, Journal of Chemistry, 2019 (2019), 1
O. G. Glotov, “Ignition and combustion of titanium particles: experimental methods and results”, Phys. Usp., 62:2 (2019), 131–165
N. I. Poletaev, M. Y. Khlebnikova, K. Y. Khanchych, “Producing and properties of zinc dust flames”, Combustion Science and Technology, 190:6 (2018), 1096
M. Khlebnykova, K. Khanchych, N. Poletaev, 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 2018, 01SPN25-1
Alexander M. Savel'ev, Alexander M. Starik, “The formation of (Al2O3)n clusters as a probable mechanism of aluminum oxide nucleation during the combustion of aluminized fuels: Numerical analysis”, Combustion and Flame, 196 (2018), 223
N. I. Poletaev, “Relationship between the dusty flame propagation velocity and the regime of combustion of fuel particles”, Combustion, Explosion and Shock Waves, 52:6 (2016), 673–682
Oleg G. Glotov, Vladimir E. Zarko, Energetic Nanomaterials, 2016, 285
I V Berezovskaya, N I Poletaev, M E Khlebnikova, I V Zatovsky, K L Bychkov, N P Efryushina, O V Khomenko, V P Dotsenko, “Luminescence study of nanosized Al2O3:Tb3+obtained by gas-dispersed synthesis”, Methods Appl. Fluoresc., 4:3 (2016), 034011
N. I. Poletaev, “Firmation of condensed combustion products in dust flames of metals: Coagulation stage”, Combustion, Explosion and Shock Waves, 51:4 (2015), 444–456
N.I. Poletaev, A.N. Zolotko, Yu.A. Doroshenko, M.E. Khlebnikova, “Smoky Plasma in a Dust Flame”, Ukr. J. Phys., 59:4 (2014), 379
V.P. Dotsenko, I.V. Berezovskaya, E.V. Zubar, N.P. Efryushina, N.I. Poletaev, Yu.A. Doroshenko, G.B. Stryganyuk, A.S. Voloshinovskii, “Synthesis and luminescent study of Ce3+-doped terbium–yttrium aluminum garnet”, Journal of Alloys and Compounds, 550 (2013), 159