Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 4, Pages 65–71
DOI: https://doi.org/10.4213/faa853
(Mi faa853)
 

This article is cited in 2 scientific papers (total in 2 papers)

Entropy Extension

A. E. Litvaka, V. D. Milmanb, A. Pajorc, N. Tomczak-Jaegermanna

a University of Alberta
b Tel Aviv University, School of Mathematical Sciences
c Université de Marne-la-Vallée
Full-text PDF (166 kB) Citations (2)
References:
Abstract: We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of $\ell_{\infty}$. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.
Keywords: metric entropy, entropy extension, entropy lifting, entropy decomposition, covering numbers.
Received: 18.05.2006
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 4, Pages 298–303
DOI: https://doi.org/10.1007/s10688-006-0046-8
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. E. Litvak, V. D. Milman, A. Pajor, N. Tomczak-Jaegermann, “Entropy Extension”, Funktsional. Anal. i Prilozhen., 40:4 (2006), 65–71; Funct. Anal. Appl., 40:4 (2006), 298–303
Citation in format AMSBIB
\Bibitem{LitMilPaj06}
\by A.~E.~Litvak, V.~D.~Milman, A.~Pajor, N.~Tomczak-Jaegermann
\paper Entropy Extension
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 4
\pages 65--71
\mathnet{http://mi.mathnet.ru/faa853}
\crossref{https://doi.org/10.4213/faa853}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307703}
\zmath{https://zbmath.org/?q=an:1118.52014}
\elib{https://elibrary.ru/item.asp?id=9311892}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 4
\pages 298--303
\crossref{https://doi.org/10.1007/s10688-006-0046-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243542200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846135074}
Linking options:
  • https://www.mathnet.ru/eng/faa853
  • https://doi.org/10.4213/faa853
  • https://www.mathnet.ru/eng/faa/v40/i4/p65
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:521
    Full-text PDF :227
    References:49
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024