Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 4, Pages 49–64
DOI: https://doi.org/10.4213/faa848
(Mi faa848)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stability of Approximation Under the Action of Singular Integral Operators

S. V. Kislyakova, N. Ya. Kruglyakb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Luleå University of Technology
Full-text PDF (282 kB) Citations (1)
References:
Abstract: Let $T$ be a singular integral operator, and let $0<\alpha<1$. If $t>0$ and the functions $f$ and $Tf$ are both integrable, then there exists a function $g\in B_{\operatorname{Lip}_{\alpha}}(ct)$ such that
$$ \|f-g\|_{L^1}\le C\operatorname{dist}_{L^1}(f,B_{\operatorname{Lip}_{\alpha}}(t)) $$
and
$$ \|Tf-Tg\|_{L^1}\le C\|f-g\|_{L^1}+\operatorname{dist}_{L^1} (Tf,B_{\operatorname{Lip}_{\alpha}}(t)). $$
(Here $B_X(\tau)$ is the ball of radius $\tau$ and centered at zero in the space $X$; the constants $C$ and $c$ do not depend on $t$ and $f$.) The function $g$ is independent of $T$ and is constructed starting with $f$ by a nearly algorithmic procedure resembling the classical Calderón–Zygmund decomposition.
Keywords: Calderón–Zygmund decomposition, singular integral operator, covering theorem, wavelets.
Received: 11.08.2006
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 4, Pages 285–297
DOI: https://doi.org/10.1007/s10688-006-0045-9
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. V. Kislyakov, N. Ya. Kruglyak, “Stability of Approximation Under the Action of Singular Integral Operators”, Funktsional. Anal. i Prilozhen., 40:4 (2006), 49–64; Funct. Anal. Appl., 40:4 (2006), 285–297
Citation in format AMSBIB
\Bibitem{KisKru06}
\by S.~V.~Kislyakov, N.~Ya.~Kruglyak
\paper Stability of Approximation Under the Action of Singular Integral Operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 4
\pages 49--64
\mathnet{http://mi.mathnet.ru/faa848}
\crossref{https://doi.org/10.4213/faa848}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307702}
\zmath{https://zbmath.org/?q=an:1123.46018}
\elib{https://elibrary.ru/item.asp?id=9311891}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 4
\pages 285--297
\crossref{https://doi.org/10.1007/s10688-006-0045-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243542200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846163760}
Linking options:
  • https://www.mathnet.ru/eng/faa848
  • https://doi.org/10.4213/faa848
  • https://www.mathnet.ru/eng/faa/v40/i4/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :219
    References:65
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024