Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 4, Pages 72–82
DOI: https://doi.org/10.4213/faa851
(Mi faa851)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Growth Irregularity of Slowly Growing Entire Functions

I. V. Ostrovskiiab, A. E. Üreyenb

a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
b Bilkent University
Full-text PDF (179 kB) Citations (1)
References:
Abstract: We show that entire transcendental functions $f$ satisfying
$$ \log M(r,f)=o(\log^2r),\qquad r\to\infty\quad (M(r,f):=\max_{|z|=r}|f(z)|) $$
necessarily have growth irregularity, which increases as the growth diminishes. In particular, if $1<p<2$, then the asymptotics
$$ \log M(r,f)=\log^pr+o(\log^{2-p}r),\qquad r\to\infty, $$
is impossible. It becomes possible if "$o$" is replaced by "$O$."
Keywords: Clunie–Kövari theorem, Erdös–Kövari theorem, Hayman convexity theorem, maximum term, Levin's strong proximate order.
Received: 15.03.2006
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 4, Pages 304–312
DOI: https://doi.org/10.1007/s10688-006-0047-7
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: I. V. Ostrovskii, A. E. Üreyen, “The Growth Irregularity of Slowly Growing Entire Functions”, Funktsional. Anal. i Prilozhen., 40:4 (2006), 72–82; Funct. Anal. Appl., 40:4 (2006), 304–312
Citation in format AMSBIB
\Bibitem{OstUre06}
\by I.~V.~Ostrovskii, A.~E.~\"Ureyen
\paper The Growth Irregularity of Slowly Growing Entire Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 4
\pages 72--82
\mathnet{http://mi.mathnet.ru/faa851}
\crossref{https://doi.org/10.4213/faa851}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307704}
\zmath{https://zbmath.org/?q=an:1113.30030}
\elib{https://elibrary.ru/item.asp?id=9311893}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 4
\pages 304--312
\crossref{https://doi.org/10.1007/s10688-006-0047-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243542200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846182606}
Linking options:
  • https://www.mathnet.ru/eng/faa851
  • https://doi.org/10.4213/faa851
  • https://www.mathnet.ru/eng/faa/v40/i4/p72
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:503
    Full-text PDF :251
    References:61
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024