Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 4, Pages 83–103
DOI: https://doi.org/10.4213/faa849
(Mi faa849)
 

This article is cited in 16 scientific papers (total in 16 papers)

Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains

M. S. Agranovich

Moscow State Institute of Electronics and Mathematics (Technical University)
References:
Abstract: In a bounded Lipschitz domain in $\mathbb{R}^n$, we consider a second-order strongly elliptic system with symmetric principal part written in divergent form. We study the Neumann boundary value problem in a generalized variational (or weak) setting using the Lebesgue spaces $H^\sigma_p(\Omega)$ for solutions, where $p$ can differ from $2$ and $\sigma$ can differ from $1$. Using the tools of interpolation theory, we generalize the known theorem on the regularity of solutions, in which $p=2$ and $|\sigma-1|<1/2$, and the corresponding theorem on the unique solvability of the problem (Savaré, 1998) to $p$ close to $2$. We compare this approach with the nonvariational approach accepted in numerous papers of the modern theory of boundary value problems in Lipschitz domains. We discuss the regularity of eigenfunctions of the Dirichlet, Neumann, and Poincaré–Steklov spectral problems.
Keywords: second-order strongly elliptic system, Dirichlet, Neumann, and Poincaré–Steklov boundary value problems, variational solution, interpolation, regularity of solutions, Lebesgue and Besov spaces, regularity of eigenfunctions.
Received: 05.07.2006
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 4, Pages 313–329
DOI: https://doi.org/10.1007/s10688-006-0048-6
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. S. Agranovich, “Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains”, Funktsional. Anal. i Prilozhen., 40:4 (2006), 83–103; Funct. Anal. Appl., 40:4 (2006), 313–329
Citation in format AMSBIB
\Bibitem{Agr06}
\by M.~S.~Agranovich
\paper Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 4
\pages 83--103
\mathnet{http://mi.mathnet.ru/faa849}
\crossref{https://doi.org/10.4213/faa849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307705}
\zmath{https://zbmath.org/?q=an:1169.35327}
\elib{https://elibrary.ru/item.asp?id=9311894}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 4
\pages 313--329
\crossref{https://doi.org/10.1007/s10688-006-0048-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243542200007}
\elib{https://elibrary.ru/item.asp?id=13510910}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846145381}
Linking options:
  • https://www.mathnet.ru/eng/faa849
  • https://doi.org/10.4213/faa849
  • https://www.mathnet.ru/eng/faa/v40/i4/p83
  • This publication is cited in the following 16 articles:
    1. Rabinovich V., “The Method of Potential Operators For Anisotropic Helmholtz Operators on Domains With Smooth Unbounded Boundaries”, Recent Trends in Operator Theory and Partial Differential Equations: the Roland Duduchava Anniversary Volume, Operator Theory Advances and Applications, 258, eds. Mazya V., Natroshvili D., Shargorodsky E., Wendland W., Springer International Publishing Ag, 2017, 229–256  crossref  mathscinet  zmath  isi  scopus
    2. Rabinovich V., “Integral Equations of Diffraction Problems With Unbounded Smooth Obstacles”, Integr. Equ. Oper. Theory, 84:2 (2016), 235–266  crossref  mathscinet  zmath  isi  scopus
    3. Rabinovich V., “Lp -theory of boundary integral operators for domains with unbounded smooth boundary”, Georgian Math. J., 23:4 (2016), 595–614  crossref  mathscinet  zmath  isi  scopus
    4. Rabinovich V., “Transmission Problems For Conical and Quasi-Conical At Infinity Domains”, Appl. Anal., 94:10 (2015), 2077–2094  crossref  mathscinet  zmath  isi  elib  scopus
    5. Luisa Consiglieri, “Explicit Estimates for Solutions of Mixed Elliptic Problems”, International Journal of Partial Differential Equations, 2014 (2014), 1  crossref
    6. M. S. Agranovich, A. M. Selitskii, “Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains”, Funct. Anal. Appl., 47:2 (2013), 83–95  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. Rabinovich V., “On Boundary Integral Operators for Diffraction Problems on Graphs with Finitely Many Exits at Infinity”, Russ. J. Math. Phys., 20:4 (2013), 508–522  crossref  mathscinet  zmath  isi
    8. Kozlov V., Nazarov S., “On the Hadamard Formula for Second Order Systems in Non-Smooth Domains”, Commun. Partial Differ. Equ., 37:5 (2012), 901–933  crossref  mathscinet  zmath  isi  elib  scopus
    9. M. S. Agranovich, “Spectral problems in Lipschitz domains”, Journal of Mathematical Sciences, 190:1 (2013), 8–33  mathnet  crossref  mathscinet
    10. M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funct. Anal. Appl., 45:1 (2011), 1–12  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Volkwein S., “Admittance identification from point-wise sound pressure measurements using reduced-order modelling”, J. Optim. Theory Appl., 147:1 (2010), 169–193  crossref  mathscinet  zmath  isi  scopus
    12. M. S. Agranovich, “Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains”, Funct. Anal. Appl., 43:3 (2009), 165–183  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. Kozlov V., “Behavior of solutions to the Dirichlet problem for elliptic systems in convex domains”, Comm. Partial Differential Equations, 34:1 (2009), 24–51  crossref  mathscinet  zmath  isi  scopus
    14. M. S. Agranovich, “Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and $B_p^\sigma$”, Funct. Anal. Appl., 42:4 (2008), 249–267  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. Agranovich M.S., “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155  crossref  mathscinet  zmath  isi  elib  scopus
    16. M. S. Agranovich, “To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains”, Funct. Anal. Appl., 41:4 (2007), 247–263  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:843
    Full-text PDF :347
    References:99
    First page:8
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025