Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 4, Pages 83–103
DOI: https://doi.org/10.4213/faa849
(Mi faa849)
 

This article is cited in 16 scientific papers (total in 16 papers)

Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains

M. S. Agranovich

Moscow State Institute of Electronics and Mathematics (Technical University)
References:
Abstract: In a bounded Lipschitz domain in $\mathbb{R}^n$, we consider a second-order strongly elliptic system with symmetric principal part written in divergent form. We study the Neumann boundary value problem in a generalized variational (or weak) setting using the Lebesgue spaces $H^\sigma_p(\Omega)$ for solutions, where $p$ can differ from $2$ and $\sigma$ can differ from $1$. Using the tools of interpolation theory, we generalize the known theorem on the regularity of solutions, in which $p=2$ and $|\sigma-1|<1/2$, and the corresponding theorem on the unique solvability of the problem (Savaré, 1998) to $p$ close to $2$. We compare this approach with the nonvariational approach accepted in numerous papers of the modern theory of boundary value problems in Lipschitz domains. We discuss the regularity of eigenfunctions of the Dirichlet, Neumann, and Poincaré–Steklov spectral problems.
Keywords: second-order strongly elliptic system, Dirichlet, Neumann, and Poincaré–Steklov boundary value problems, variational solution, interpolation, regularity of solutions, Lebesgue and Besov spaces, regularity of eigenfunctions.
Received: 05.07.2006
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 4, Pages 313–329
DOI: https://doi.org/10.1007/s10688-006-0048-6
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. S. Agranovich, “Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains”, Funktsional. Anal. i Prilozhen., 40:4 (2006), 83–103; Funct. Anal. Appl., 40:4 (2006), 313–329
Citation in format AMSBIB
\Bibitem{Agr06}
\by M.~S.~Agranovich
\paper Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 4
\pages 83--103
\mathnet{http://mi.mathnet.ru/faa849}
\crossref{https://doi.org/10.4213/faa849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307705}
\zmath{https://zbmath.org/?q=an:1169.35327}
\elib{https://elibrary.ru/item.asp?id=9311894}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 4
\pages 313--329
\crossref{https://doi.org/10.1007/s10688-006-0048-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243542200007}
\elib{https://elibrary.ru/item.asp?id=13510910}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846145381}
Linking options:
  • https://www.mathnet.ru/eng/faa849
  • https://doi.org/10.4213/faa849
  • https://www.mathnet.ru/eng/faa/v40/i4/p83
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:782
    Full-text PDF :324
    References:88
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024