Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 4, Pages 86–88
DOI: https://doi.org/10.4213/faa3616
(Mi faa3616)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

The Topological Support of the z-Measures on the Thoma Simplex

G. I. Olshanskiiabc

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Skolkovo Institute of Science and Technology
c National Research University Higher School of Economics, Moscow
Full-text PDF (117 kB) Citations (3)
References:
Abstract: The Thoma simplex Ω is an infinite-dimensional space, a kind of dual object to the infinite symmetric group. The z-measures are probability measures on Ω depending on three continuous parameters. One of them is the parameter of the Jack symmetric functions, and in the limit as it goes to 0, the z-measures turn into the Poisson–Dirichlet distributions. The definition of the z-measures is somewhat implicit. We show that the topological support of any nondegenerate z-measure is the whole space Ω.
Keywords: z-measure, Poisson-Dirichlet distribution, topological support, symmetric function.
Received: 18.09.2018
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 4, Pages 308–310
DOI: https://doi.org/10.1007/s10688-018-0240-5
Bibliographic databases:
Document Type: Article
UDC: 519.217.4
Language: Russian
Citation: G. I. Olshanskii, “The Topological Support of the z-Measures on the Thoma Simplex”, Funktsional. Anal. i Prilozhen., 52:4 (2018), 86–88; Funct. Anal. Appl., 52:4 (2018), 308–310
Citation in format AMSBIB
\Bibitem{Ols18}
\by G.~I.~Olshanskii
\paper The Topological Support of the z-Measures on the Thoma Simplex
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 4
\pages 86--88
\mathnet{http://mi.mathnet.ru/faa3616}
\crossref{https://doi.org/10.4213/faa3616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3875357}
\elib{https://elibrary.ru/item.asp?id=36361294}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 4
\pages 308--310
\crossref{https://doi.org/10.1007/s10688-018-0240-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457526600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060960485}
Linking options:
  • https://www.mathnet.ru/eng/faa3616
  • https://doi.org/10.4213/faa3616
  • https://www.mathnet.ru/eng/faa/v52/i4/p86
  • This publication is cited in the following 3 articles:
    1. O. Gorodetsky, B. Rodgers, “The variance of the number of sums of two squares in F-Q[T] in short intervals”, Am. J. Math., 143:6 (2021), 1703–1745  crossref  mathscinet  zmath  isi
    2. S. Yu. Korotkikh, “Perekhodnye plotnosti diffuzionnykh protsessov na simplekse Toma”, Funkts. analiz i ego pril., 54:2 (2020), 58–77  mathnet  crossref  mathscinet
    3. S. Yu. Korotkikh, “Transition Functions of Diffusion Processes on the Thoma Simplex”, Funct Anal Its Appl, 54:2 (2020), 118  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :86
    References:71
    First page:14
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025