Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 4, Pages 72–85
DOI: https://doi.org/10.4213/faa3595
(Mi faa3595)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Universal Euler Characteristic of $V$-Manifolds

S. M. Gusein-Zadea, I. Luengobc, A. Melle-Hernándezd

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Institute of Mathematical Sciences, Madrid
c Departamento de Álgebra, Universidad Complutense de Madrid
d Institute of Interdisciplinary Mathematics, Department of Algebra, Geometry, and Topology, Complutense University of Madrid
Full-text PDF (243 kB) Citations (4)
References:
Abstract: The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a $V$-manifold. We discuss a universal additive topological invariant of $V$-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a ${\mathbb Z}$-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant $CW$-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for $V$-manifolds and for cell complexes of the described type.
Keywords: finite group actions, $V$-manifold, orbifold, additive topological invariant, lambda-ring, Macdonald identity.
Funding agency Grant number
Russian Science Foundation 16-11-10018
Ministerio de Economía y Competitividad MTM2016-76868-C2-1-P
Received: 06.06.2018
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 4, Pages 297–307
DOI: https://doi.org/10.1007/s10688-018-0239-y
Bibliographic databases:
Document Type: Article
UDC: 515.165
Language: Russian
Citation: S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “The Universal Euler Characteristic of $V$-Manifolds”, Funktsional. Anal. i Prilozhen., 52:4 (2018), 72–85; Funct. Anal. Appl., 52:4 (2018), 297–307
Citation in format AMSBIB
\Bibitem{GusLueMel18}
\by S.~M.~Gusein-Zade, I.~Luengo, A.~Melle-Hern\'andez
\paper The Universal Euler Characteristic of $V$-Manifolds
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 4
\pages 72--85
\mathnet{http://mi.mathnet.ru/faa3595}
\crossref{https://doi.org/10.4213/faa3595}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3875356}
\elib{https://elibrary.ru/item.asp?id=36361292}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 4
\pages 297--307
\crossref{https://doi.org/10.1007/s10688-018-0239-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457526600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060909857}
Linking options:
  • https://www.mathnet.ru/eng/faa3595
  • https://doi.org/10.4213/faa3595
  • https://www.mathnet.ru/eng/faa/v52/i4/p72
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024