Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 4, Pages 89–93
DOI: https://doi.org/10.4213/faa3531
(Mi faa3531)
 

This article is cited in 9 scientific papers (total in 9 papers)

Brief communications

A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant

A. A. Fedotov

Saint Petersburg State University
Full-text PDF (142 kB) Citations (9)
References:
Abstract: For the almost Mathieu operator with small coupling constant, we describe the asymptotics of a monodromy matrix and of a series of spectral gaps.
Keywords: almost Mathieu operator, small coupling, monodromy matrix, asymptotics of spectral gaps.
Funding agency Grant number
Russian Science Foundation 17-11-01069
Received: 03.10.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 4, Pages 311–315
DOI: https://doi.org/10.1007/s10688-018-0241-4
Bibliographic databases:
Document Type: Article
UDC: 517.984.5+517.962.22
Language: Russian
Citation: A. A. Fedotov, “A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant”, Funktsional. Anal. i Prilozhen., 52:4 (2018), 89–93; Funct. Anal. Appl., 52:4 (2018), 311–315
Citation in format AMSBIB
\Bibitem{Fed18}
\by A.~A.~Fedotov
\paper A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 4
\pages 89--93
\mathnet{http://mi.mathnet.ru/faa3531}
\crossref{https://doi.org/10.4213/faa3531}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3875358}
\elib{https://elibrary.ru/item.asp?id=36361296}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 4
\pages 311--315
\crossref{https://doi.org/10.1007/s10688-018-0241-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457526600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060943640}
Linking options:
  • https://www.mathnet.ru/eng/faa3531
  • https://doi.org/10.4213/faa3531
  • https://www.mathnet.ru/eng/faa/v52/i4/p89
  • This publication is cited in the following 9 articles:
    1. K. S. Sedov, A. A. Fedotov, “On Monodromy Matrices for a Difference Schrödinger Equation on the Real Line with a Small Periodic Potential”, J Math Sci, 283:4 (2024), 650  crossref
    2. A. A. Fedotov, I. I. Lukashova, “On a Self-Similar Behavior of Logarithmic Sums”, J Math Sci, 283:4 (2024), 690  crossref
    3. A. Fedotov, K. Sedov, “A Series of Spectral Gaps for the Ganeshan–Pixley–Das Sarma Model”, Russ. J. Math. Phys., 31:4 (2024), 622  crossref
    4. A. A. Fedotov, “A series of spectral gaps for the almost Mathieu operator with a small coupling constant”, Math. Notes, 116:5 (2024), 1100–1143  mathnet  mathnet  crossref
    5. K. S. Sedov, A. A. Fedotov, “O matritsakh monodromii dlya raznostnogo uravneniya Shrëdingera na osi s malym periodicheskim potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 223–244  mathnet
    6. A. A. Fedotov, I. I. Lukashova, “O samopodobnom povedenii logarifmicheskikh summ”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 279–292  mathnet
    7. A. Fedotov, E. Shchetka, “Monodromy matrices for Harper equation”, International Conference on Days on Diffraction (DD), IEEE, New York, 2018, 102–105  isi
    8. A. Fedotov, E. Shchetka, 2018 Days on Diffraction (DD), 2018, 102  crossref
    9. A. A. Fedotov, “On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential v(z)=e2πiz”, J. Math. Sci. (N. Y.), 238:5 (2019), 750–761  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:631
    Full-text PDF :221
    References:67
    First page:32
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025