Abstract:
For the almost Mathieu operator with small coupling constant, we describe the asymptotics of a monodromy matrix and of a series of spectral gaps.
Keywords:
almost Mathieu operator, small coupling, monodromy matrix, asymptotics of spectral gaps.
Citation:
A. A. Fedotov, “A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant”, Funktsional. Anal. i Prilozhen., 52:4 (2018), 89–93; Funct. Anal. Appl., 52:4 (2018), 311–315
\Bibitem{Fed18}
\by A.~A.~Fedotov
\paper A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 4
\pages 89--93
\mathnet{http://mi.mathnet.ru/faa3531}
\crossref{https://doi.org/10.4213/faa3531}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3875358}
\elib{https://elibrary.ru/item.asp?id=36361296}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 4
\pages 311--315
\crossref{https://doi.org/10.1007/s10688-018-0241-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457526600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060943640}
Linking options:
https://www.mathnet.ru/eng/faa3531
https://doi.org/10.4213/faa3531
https://www.mathnet.ru/eng/faa/v52/i4/p89
This publication is cited in the following 9 articles:
K. S. Sedov, A. A. Fedotov, “On Monodromy Matrices for a Difference Schrödinger Equation on the Real Line with a Small Periodic Potential”, J Math Sci, 283:4 (2024), 650
A. A. Fedotov, I. I. Lukashova, “On a Self-Similar Behavior of Logarithmic Sums”, J Math Sci, 283:4 (2024), 690
A. Fedotov, K. Sedov, “A Series of Spectral Gaps for the Ganeshan–Pixley–Das Sarma Model”, Russ. J. Math. Phys., 31:4 (2024), 622
A. A. Fedotov, “A series of spectral gaps for the almost Mathieu operator with a small coupling constant”, Math. Notes, 116:5 (2024), 1100–1143
K. S. Sedov, A. A. Fedotov, “O matritsakh monodromii dlya raznostnogo uravneniya Shrëdingera na osi s malym periodicheskim potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 223–244
A. A. Fedotov, I. I. Lukashova, “O samopodobnom povedenii logarifmicheskikh summ”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 279–292
A. Fedotov, E. Shchetka, “Monodromy matrices for Harper equation”, International Conference on Days on Diffraction (DD), IEEE, New York, 2018, 102–105
A. Fedotov, E. Shchetka, 2018 Days on Diffraction (DD), 2018, 102
A. A. Fedotov, “On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential v(z)=e−2πiz”, J. Math. Sci. (N. Y.), 238:5 (2019), 750–761