Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 4, Pages 62–71
DOI: https://doi.org/10.4213/faa3534
(Mi faa3534)
 

This article is cited in 1 scientific paper (total in 1 paper)

Cardinality of $\Lambda$ Determines the Geometry of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$

F. J. Garcia-Pacheco

Universidad de Cadiz
Full-text PDF (214 kB) Citations (1)
References:
Abstract: We study the geometry of the unit ball of $\ell_\infty(\Lambda)$ and of the dual space, proving, among other things, that $\Lambda$ is countable if and only if $1$ is an exposed point of $\mathsf{B}_{\ell_\infty(\Lambda)}$. On the other hand, we prove that $\Lambda$ is finite if and only if the $\delta_\lambda$ are the only functionals taking the value $1$ at a canonical element and vanishing at all other canonical elements. We also show that the restrictions of evaluation functionals to a $2$-dimensional subspace are not necessarily extreme points of the dual of that subspace. Finally, we prove that if $\Lambda$ is uncountable, then the face of $\mathsf{B}_{\ell_\infty(\Lambda)^*}$ consisting of norm $1$ functionals attaining their norm at the constant function $1$ has empty interior relative to $\mathsf{S}_{\ell_\infty(\Lambda)^*}$.
Keywords: bounded functions, extremal structure.
Funding agency Grant number
Ministerio de Economía y Competitividad MTM2014-58984-P
Federación Española de Enfermedades Raras
The author was supported by Research Grant MTM2014-58984-P (this project has been funded by the Spanish Ministry of Economy and Competitivity and by the European Fund for Regional Development FEDER).
Received: 11.10.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 4, Pages 290–296
DOI: https://doi.org/10.1007/s10688-018-0238-z
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: F. J. Garcia-Pacheco, “Cardinality of $\Lambda$ Determines the Geometry of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$”, Funktsional. Anal. i Prilozhen., 52:4 (2018), 62–71; Funct. Anal. Appl., 52:4 (2018), 290–296
Citation in format AMSBIB
\Bibitem{Gar18}
\by F.~J.~Garcia-Pacheco
\paper Cardinality of $\Lambda$ Determines the Geometry of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 4
\pages 62--71
\mathnet{http://mi.mathnet.ru/faa3534}
\crossref{https://doi.org/10.4213/faa3534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3875355}
\elib{https://elibrary.ru/item.asp?id=36361291}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 4
\pages 290--296
\crossref{https://doi.org/10.1007/s10688-018-0238-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457526600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060910783}
Linking options:
  • https://www.mathnet.ru/eng/faa3534
  • https://doi.org/10.4213/faa3534
  • https://www.mathnet.ru/eng/faa/v52/i4/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :28
    References:21
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024