Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 4, Pages 55–75
DOI: https://doi.org/10.4213/faa3256
(Mi faa3256)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the Asymptotics of the Element Counting Function in an Additive Arithmetic Semigroup with Exponential Counting Function of Prime Generators

D. S. Minenkovab, V. E. Nazaikinskiiab, V. L. Chernyshevc

a Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast, Russia
c National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (262 kB) Citations (8)
References:
Abstract: We find the asymptotics of the element counting function for an additive arithmetic semigroup with exponential growth of the counting function of prime generators.
Keywords: arithmetic semigroup, inverse abstract prime number theorem, counting function, entropy, asymptotics.
Funding agency Grant number
Russian Science Foundation 14-11-00432
This work was supported by the Russian Science Foundation under grant 14-11-00432.
Received: 17.12.2015
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 4, Pages 291–307
DOI: https://doi.org/10.1007/s10688-016-0160-1
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: D. S. Minenkov, V. E. Nazaikinskii, V. L. Chernyshev, “On the Asymptotics of the Element Counting Function in an Additive Arithmetic Semigroup with Exponential Counting Function of Prime Generators”, Funktsional. Anal. i Prilozhen., 50:4 (2016), 55–75; Funct. Anal. Appl., 50:4 (2016), 291–307
Citation in format AMSBIB
\Bibitem{MinNazChe16}
\by D.~S.~Minenkov, V.~E.~Nazaikinskii, V.~L.~Chernyshev
\paper On the Asymptotics of the Element Counting Function in an Additive Arithmetic Semigroup with Exponential Counting Function of Prime Generators
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 4
\pages 55--75
\mathnet{http://mi.mathnet.ru/faa3256}
\crossref{https://doi.org/10.4213/faa3256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646710}
\elib{https://elibrary.ru/item.asp?id=28119104}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 4
\pages 291--307
\crossref{https://doi.org/10.1007/s10688-016-0160-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390093200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85006482326}
Linking options:
  • https://www.mathnet.ru/eng/faa3256
  • https://doi.org/10.4213/faa3256
  • https://www.mathnet.ru/eng/faa/v50/i4/p55
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :63
    References:57
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024