Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 4, Pages 76–90
DOI: https://doi.org/10.4213/faa3251
(Mi faa3251)
 

This article is cited in 2 scientific papers (total in 2 papers)

Tangential Polynomials and Matrix KdV Elliptic Solitons

A. Treibichab

a Université d'Artois, France
b Universidad de la República, Uruguaj
Full-text PDF (234 kB) Citations (2)
References:
Abstract: Let $(X,q)$ be an elliptic curve marked at the origin. Starting from any cover $\pi\colon\Gamma\to X$ of an elliptic curve $X$ marked at $d$ points $\{\pi_i\}$ of the fiber $\pi^{-1}(q)$ and satisfying a particular criterion, Krichever constructed a family of $d\times d$ matrix KP solitons, that is, matrix solutions, doubly periodic in $x$, of the KP equation. Moreover, if $\Gamma$ has a meromorphic function $f\colon\Gamma\to\mathbb{P}^1$ with a double pole at each $p_i$, then these solutions are doubly periodic solutions of the matrix KdV equation $U_t=\frac14(3UU_x+3U_xU+U_{xxx})$. In this article, we restrict ourselves to the case in which there exists a meromorphic function with a unique double pole at each of the $d$ points $\{p_i\}$; i.e. $\Gamma$ is hyperelliptic and each $p_i$ is a Weierstrass point of $\Gamma$. More precisely, our purpose is threefold: (1) present simple polynomial equations defining spectral curves of matrix KP elliptic solitons; (2) construct the corresponding polynomials via the vector Baker–Akhiezer function of $X$; (3) find arbitrarily high genus spectral curves of matrix KdV elliptic solitons.
Keywords: KP equation, KdV equation, compact Riemann surface, vector Baker–Akhiezer function, ruled surface.
Received: 10.10.2015
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 4, Pages 308–318
DOI: https://doi.org/10.1007/s10688-016-0161-0
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. Treibich, “Tangential Polynomials and Matrix KdV Elliptic Solitons”, Funktsional. Anal. i Prilozhen., 50:4 (2016), 76–90; Funct. Anal. Appl., 50:4 (2016), 308–318
Citation in format AMSBIB
\Bibitem{Tre16}
\by A.~Treibich
\paper Tangential Polynomials and Matrix KdV Elliptic Solitons
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 4
\pages 76--90
\mathnet{http://mi.mathnet.ru/faa3251}
\crossref{https://doi.org/10.4213/faa3251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646711}
\elib{https://elibrary.ru/item.asp?id=28119106}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 4
\pages 308--318
\crossref{https://doi.org/10.1007/s10688-016-0161-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390093200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85006372322}
Linking options:
  • https://www.mathnet.ru/eng/faa3251
  • https://doi.org/10.4213/faa3251
  • https://www.mathnet.ru/eng/faa/v50/i4/p76
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :55
    References:55
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024