Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 4, Pages 43–54
DOI: https://doi.org/10.4213/faa3253
(Mi faa3253)
 

This article is cited in 19 scientific papers (total in 19 papers)

Functional Equations and Weierstrass Sigma-Functions

A. A. Illarionov

Khabarovsk Division of the Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russia
References:
Abstract: It is proved that if an entire function $f\colon\mathbb{C}\to\mathbb{C}$ satisfies an equation of the form $f(x+y) f(x-y) = \alpha_1(x)\beta_1(y)+ \alpha_2(x)\beta_2(y) + \alpha_3(x)\beta_3(y)$, $x,y\in \mathbb{C}$, for some $\alpha_j,\beta_j\colon\mathbb{C}\to\mathbb{C}$ and there exist no $\tilde \alpha_j$ and $\tilde\beta_j$ for which $f(x+y) f(x-y) = \tilde\alpha_1(x)\tilde\beta_1(y)+ \tilde\alpha_2(x)\tilde\beta_2(y)$, then $f(z) = \exp(Az^2+ Bz + C) \cdot \sigma_\Gamma (z-z_1)\cdot \sigma_\Gamma (z-z_2)$, where $\Gamma$ is a lattice in $\mathbb{C}$; $\sigma_\Gamma$ is the Weierstrass sigma-function associated with $\Gamma$; $A,B,C,z_1,z_2\in\mathbb{C}$; and $z_1-z_2\notin (\frac{1}{2}\Gamma)\setminus \Gamma$.
Keywords: functional equation, Weierstrass sigma-function, elliptic function, addition theorem, trilinear functional equation.
Funding agency Grant number
Russian Science Foundation 14-11-00335
This work was supported by the Russian Science Foundation (project no. 14-11-00335).
Received: 16.10.2016
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 4, Pages 281–290
DOI: https://doi.org/10.1007/s10688-016-0159-7
Bibliographic databases:
Document Type: Article
UDC: 517.965+517.583
Language: Russian
Citation: A. A. Illarionov, “Functional Equations and Weierstrass Sigma-Functions”, Funktsional. Anal. i Prilozhen., 50:4 (2016), 43–54; Funct. Anal. Appl., 50:4 (2016), 281–290
Citation in format AMSBIB
\Bibitem{Ill16}
\by A.~A.~Illarionov
\paper Functional Equations and Weierstrass Sigma-Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 4
\pages 43--54
\mathnet{http://mi.mathnet.ru/faa3253}
\crossref{https://doi.org/10.4213/faa3253}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646709}
\elib{https://elibrary.ru/item.asp?id=28119103}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 4
\pages 281--290
\crossref{https://doi.org/10.1007/s10688-016-0159-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390093200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85006456100}
Linking options:
  • https://www.mathnet.ru/eng/faa3253
  • https://doi.org/10.4213/faa3253
  • https://www.mathnet.ru/eng/faa/v50/i4/p43
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :148
    References:54
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024