Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 2, Pages 18–26
DOI: https://doi.org/10.4213/faa3108
(Mi faa3108)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Moduli Space of Sheaves and a Generalization of MacMahon's Formula

A. Yu. Buryakab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Amsterdam, Department of Mathematics
Full-text PDF (184 kB) Citations (1)
References:
Abstract: M. Vuletic has recently found a two-parameter generalization of MacMahon's formula. In this paper we show that the coefficients in her formula are the Betti numbers of certain subvarieties in the moduli space of sheaves on the projective plane.
Keywords: moduli space, plane partition, quiver variety.
Received: 11.02.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 2, Pages 96–103
DOI: https://doi.org/10.1007/s10688-013-0014-z
Bibliographic databases:
Document Type: Article
UDC: 512.725
Language: Russian
Citation: A. Yu. Buryak, “The Moduli Space of Sheaves and a Generalization of MacMahon's Formula”, Funktsional. Anal. i Prilozhen., 47:2 (2013), 18–26; Funct. Anal. Appl., 47:2 (2013), 96–103
Citation in format AMSBIB
\Bibitem{Bur13}
\by A.~Yu.~Buryak
\paper The Moduli Space of Sheaves and a Generalization of MacMahon's Formula
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 2
\pages 18--26
\mathnet{http://mi.mathnet.ru/faa3108}
\crossref{https://doi.org/10.4213/faa3108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113866}
\zmath{https://zbmath.org/?q=an:06207377}
\elib{https://elibrary.ru/item.asp?id=20730687}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 2
\pages 96--103
\crossref{https://doi.org/10.1007/s10688-013-0014-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321438400002}
\elib{https://elibrary.ru/item.asp?id=20439115}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879802075}
Linking options:
  • https://www.mathnet.ru/eng/faa3108
  • https://doi.org/10.4213/faa3108
  • https://www.mathnet.ru/eng/faa/v47/i2/p18
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024