Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 2, Pages 2–17
DOI: https://doi.org/10.4213/faa3109
(Mi faa3109)
 

This article is cited in 17 scientific papers (total in 17 papers)

Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains

M. S. Agranovicha, A. M. Selitskiib

a Moscow State Institute of Electronics and Mathematics — Higher School of Economics
b Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
References:
Abstract: Let $\Omega$ be a bounded Lipschitz domain in $\mathbb{R}^n$, $n\ge2$, and let $L$ be a second-order matrix strongly elliptic operator in $\Omega$ written in divergence form. There is a vast literature dealing with the study of domains of fractional powers of operators corresponding to various problems (beginning with the Dirichlet and Neumann problems) with homogeneous boundary conditions for the equation $Lu=f$, including the solution of the Kato square root problem, which arose in 1961. Mixed problems and a class of problems for higher-order systems have been covered as well.
We suggest a new abstract approach to the topic, which permits one to obtain the results that we deem to be most important in a much simpler and unified way and cover new operators, namely, classical boundary operators on the Lipschitz boundary $\Gamma=\partial\Omega$ or part of it. To this end, we simultaneously consider two well-known operators associated with the boundary value problem.
Keywords: Lipschitz domain, strongly elliptic system, coercive problem, Kato's square root problem.
Received: 17.01.2013
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 2, Pages 83–95
DOI: https://doi.org/10.1007/s10688-013-0013-0
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.95
Language: Russian
Citation: M. S. Agranovich, A. M. Selitskii, “Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains”, Funktsional. Anal. i Prilozhen., 47:2 (2013), 2–17; Funct. Anal. Appl., 47:2 (2013), 83–95
Citation in format AMSBIB
\Bibitem{AgrSel13}
\by M.~S.~Agranovich, A.~M.~Selitskii
\paper Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 2
\pages 2--17
\mathnet{http://mi.mathnet.ru/faa3109}
\crossref{https://doi.org/10.4213/faa3109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113865}
\zmath{https://zbmath.org/?q=an:06207376}
\elib{https://elibrary.ru/item.asp?id=20730686}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 2
\pages 83--95
\crossref{https://doi.org/10.1007/s10688-013-0013-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321438400001}
\elib{https://elibrary.ru/item.asp?id=20439425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879831205}
Linking options:
  • https://www.mathnet.ru/eng/faa3109
  • https://doi.org/10.4213/faa3109
  • https://www.mathnet.ru/eng/faa/v47/i2/p2
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1001
    Full-text PDF :339
    References:147
    First page:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024