Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 2, Pages 2–17
DOI: https://doi.org/10.4213/faa3109
(Mi faa3109)
 

This article is cited in 17 scientific papers (total in 17 papers)

Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains

M. S. Agranovicha, A. M. Selitskiib

a Moscow State Institute of Electronics and Mathematics — Higher School of Economics
b Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
References:
Abstract: Let Ω be a bounded Lipschitz domain in Rn, n2, and let L be a second-order matrix strongly elliptic operator in Ω written in divergence form. There is a vast literature dealing with the study of domains of fractional powers of operators corresponding to various problems (beginning with the Dirichlet and Neumann problems) with homogeneous boundary conditions for the equation Lu=f, including the solution of the Kato square root problem, which arose in 1961. Mixed problems and a class of problems for higher-order systems have been covered as well.
We suggest a new abstract approach to the topic, which permits one to obtain the results that we deem to be most important in a much simpler and unified way and cover new operators, namely, classical boundary operators on the Lipschitz boundary Γ=Ω or part of it. To this end, we simultaneously consider two well-known operators associated with the boundary value problem.
Keywords: Lipschitz domain, strongly elliptic system, coercive problem, Kato's square root problem.
Received: 17.01.2013
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 2, Pages 83–95
DOI: https://doi.org/10.1007/s10688-013-0013-0
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.95
Language: Russian
Citation: M. S. Agranovich, A. M. Selitskii, “Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains”, Funktsional. Anal. i Prilozhen., 47:2 (2013), 2–17; Funct. Anal. Appl., 47:2 (2013), 83–95
Citation in format AMSBIB
\Bibitem{AgrSel13}
\by M.~S.~Agranovich, A.~M.~Selitskii
\paper Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 2
\pages 2--17
\mathnet{http://mi.mathnet.ru/faa3109}
\crossref{https://doi.org/10.4213/faa3109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113865}
\zmath{https://zbmath.org/?q=an:06207376}
\elib{https://elibrary.ru/item.asp?id=20730686}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 2
\pages 83--95
\crossref{https://doi.org/10.1007/s10688-013-0013-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321438400001}
\elib{https://elibrary.ru/item.asp?id=20439425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879831205}
Linking options:
  • https://www.mathnet.ru/eng/faa3109
  • https://doi.org/10.4213/faa3109
  • https://www.mathnet.ru/eng/faa/v47/i2/p2
  • This publication is cited in the following 17 articles:
    1. A. L. Tasevich, “On a Class of Elliptic Functional–Differential Equations with Orthotropic Contractions–Expansions”, Math Notes, 114:5-6 (2023), 978  crossref
    2. Behrndt J., Exner P., Holzmann M., Lotoreichik V., “The Landau Hamiltonian With Delta-Potentials Supported on Curves”, Rev. Math. Phys., 32:4 (2020), 2050010  crossref  mathscinet  zmath  isi  scopus
    3. Popov V.A., “Elliptic Functional Differential Equations With Degenerations”, Lobachevskii J. Math., 41:5, SI (2020), 869–894  crossref  mathscinet  zmath  isi
    4. Bonito A., Lei W., Pasciak J.E., “On Sinc Quadrature Approximations of Fractional Powers of Regularly Accretive Operators”, J. Numer. Math., 27:2 (2019), 57–68  crossref  mathscinet  isi
    5. Shaldanbayev A.Sh., Imanbayeva A.B., Beisebayeva A.Zh., Shaldanbayeva A.A., “On the Square Root of the Operator of Sturm-Liouville Fourth-Order”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 3:325 (2019), 85–96  crossref  isi
    6. Shaldanbayev A.Sh., Shaldanbayeva A.A., Shaldanbay B.A., “On Square Root of Sturm-Liuville Operator”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 3:325 (2019), 97–113  crossref  isi
    7. A. L. Skubachevskii, “The Kato conjecture for elliptic differential-difference operators with degeneration in a cylinder”, Dokl. Math., 97:1 (2018), 32–34  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    8. A. L. Skubachevskiǐ, “On a class of functional-differential operators satisfying the Kato conjecture”, St. Petersburg Math. J., 30:2 (2019), 329–346  mathnet  crossref  mathscinet  isi  elib
    9. A. L. Skubachevskii, “On a property of regularly accretive differential-difference operators with degeneracy”, Russian Math. Surveys, 73:2 (2018), 372–374  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. L. Skubachevskii, “Elliptic differential-difference operators with degeneration and the Kato square root problem”, Math. Nachr., 291:17-18 (2018), 2660–2692  crossref  mathscinet  zmath  isi
    11. A. Bonito, J. E. Pasciak, “Numerical approximation of fractional powers of regularly accretive operators”, IMA J. Numer. Anal., 37:3 (2017), 1245–1273  crossref  mathscinet  isi  scopus
    12. A. L. Skubachevskii, “Boundary-value problems for elliptic functional-differential equations and their applications”, Russian Math. Surveys, 71:5 (2016), 801–906  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russian Math. Surveys, 71:5 (2016), 907–964  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Agranovich M.S., “Spectral problems in Sobolev-type Banach spaces for strongly elliptic systems in Lipschitz domains”, Math. Nachr., 289:16 (2016), 1968–1985  crossref  mathscinet  zmath  isi  scopus
    15. Gurevich P., Vaeth M., “Stability for Semilinear Parabolic Problems in L2 and W1,2”, Z. Anal. ihre. Anwend., 35:3 (2016), 333–357  crossref  mathscinet  zmath  isi  elib  scopus
    16. Selitskii A.M., “l (P) -Solvability of Parabolic Problems With An Operator Satisfying the Kato Conjecture”, Differ. Equ., 51:6 (2015), 776–782  crossref  mathscinet  zmath  isi  scopus
    17. A. M. Selitskii, “Space of Initial Data for the Second Boundary-Value Problem for a Parabolic Differential-Difference Equation in Lipschitz Domains”, Math. Notes, 94:3 (2013), 444–447  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1073
    Full-text PDF :370
    References:167
    First page:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025